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Effective field theory for the nonlinear optical properties of photonic crystals
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We introduce an effective field theory for the nonlinear optics of photonic crystals of arbitrary dimension-
ality. Based on a canonical Hamiltonian formulation of Maxwell’'s equations, canonical effective fields are
introduced to describe the electromagnetic field. Conserved quantities are easily constructed and their physical
significance identified; the formalism can be easily quantized. We illustrate the approach by considering a
periodic Kerr medium, and show how the nonlinear coupled mode and nonlineard®g®o equations
emerge. We extend the latter to treat optical shock effects, and compare our canonical formulation with earlier

treatments.
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[. INTRODUCTION of weak variations in the linear optical properties, but with

the coefficients “renormalized” to capture how the Bloch

Current computing capabilities allow for the direct simu- wave samples the underlying gain, loss, or nonlinearity. For
lation of propagation problems in optics at a level that wouldeffective one-dimensiona&lD) structures this approach goes
have been unthinkable only a few years ago. In particularback some yearf5]; recently[7] it has been generalized to
calculations of nonlinear optical propagation in photonichigher dimensional photonic crystals.
crystals and other artificially structured materials by the di- These treatments have generally been restricted to dealing
rect numerical solution of Maxwell’s equations are now fea-with Kerr nonlinearities, and considering only the lowest-
sible. And so it becomes even more important now to seekrder dispersion and diffraction effects. While one can easily
out characterizations of such numerical solutions that allowenvisage extending this approach to consider more general
for their general understanding, and especially for the idennonlinear and propagation effects, the tedious nature of the
tification of material and geometric parameters that deteréderivation is enough to put off even the most enthusiastic
mine their qualitative nature. This is often done by examin-practitioner. There are three reasons for this.
ing the solutions of approximate equations that describe the First and probably the foremost is the way in which coef-
electromagnetic field. ficients that characterize the group velocity, group velocity

The usual approach for uniform media, and materials withrdispersion, and the like, enter in the formalism. In the course
weak variations in their linear optical properties, is to con-of the derivation, slowly varying envelope functions are in-
struct approximate equations for slowly varying envelopetroduced for all Bloch waves at a given crystal wave vector.
functions that modulate plane waves at a carrier frequenc®ne or more of these are assumed large in magnitude; these
and wave vectofl,2]. In these simple structures, the nonlin- are sometimes called “principal” terms. The others are of
ear Schrdinger equatiofNLSE) has been shown to provide smaller magnitude, which are called “companion” terms,
a good description of nonlinear propagation away from aand in the multiple scales analysis are slaved to the principal
band gap, or within a band gap but at frequencies close tterms. The dispersion relation coefficients arise through the
one of the band edgd8], and the nonlinear coupled mode connection between the principal and companion terms, and
equations (NLCME) serve as a basis for understandinga k-p analysis must be done essentially in parallel with the
propagation near and even deep within a band[d2. derivation to identify the correct coefficients. Thus a fairly

In other artificially structured materials, such as highertortuous derivation is required to produce dispersion coeffi-
dimensional photonic crystals, there are typically large variacients in the final equations that are completely expected on
tions in the linear optical properties of the structure oversimple physical grounds.
distances of the order of a wavelength of light. The usual Second, because the usual multiple scales approaches pro-
heuristic derivations that lead to the NLSE and NLCME ceed by using the assumed form for the electromagnetic field
equations here become suspect. Indeed, the approximatialirectly in the Maxwell equations, rather than from a La-
that the electromagnetic field can be described by one or grangian or Hamiltonian basis, the conservation laws of the
small set of slowly modulated plane waves is clearly physi-derived dynamical equations, and their connection with un-
cal nonsense. Yet an approach not unlike the heuristic one @erlying symmetries of the problem, are not easy to identify.
possible. The strategy for a photonic crystal is to use slowlyndeed, in the case of the nonlinear coupled mode equations
varying envelope functions to modulate Bloch waves—i.e.there has been confusion and dispute for a number of years
exact solutions of the linear problem—rather than planeover the physical meaning of one of the conserved quantities
waves, and then seek equations for those envelope functior8-10).
In the appropriate frequency regimes nonlinear Sdimger Third, for full three-dimensional problems any assump-
equations and nonlinear coupled mode equat[@gesult, tion involving envelope functions must respect, at least to an
with a form similar to those heuristically derived in the limit appropriate level of approximation, the fact that the magnetic
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field and the electric displacement are divergenceless. IRinally, although our main goal here is to present this ap-
practice this can be addressed by writing the magnetic fielghroach rather than consider particular applications, in Sec.
in terms of a vector potential and the displacement in term&/1l we consider the physics of an additional shock term that
of a dual potential, and applying the analysis at the level ofan accompany the usual self-phase modulation and group
the potentiald7]. But again more formal complexity is in- Velocity dispersion in the NLSE. This illustrates both how
troduced. easy the identification of this term is within this approach,

In this paper we introduce a different approach that avoid@nd as well how the physics enters differently and more con-
these difficulties. The idea here is to work not with slowly veniently here than in other, more traditional treatments. We
varying amplitudes that modulate Bloch functions, but rathefllustrate the use of the equations we derive here with some
with effective fieldghat are introduced within the context of €xamples in Sec. VIII; concluding remarks are presented in
a canonical formulation of the electromagnetic field in theS€C- X, and we relegate some of the mathematical details to

presence of the photonic structure. To relate these effectivil® Appendix. , _ ,
fields to the physical electromagnetic fields requirek @ Although we will be exclusively concerned with classical

analysis, but né- p analysis is needed in deriving the linear fi€lds in this paper, instead of using Poisson brackets we
dynamics of the effective fields, and to the extent that itformally employ commutators, moving back and forth freely
enters in the nonlinear dynamics it does so in a very benigh€tWween the classical and quantum formalism and notation.
way. S|m|larly.we use t mterche}ngeably with * to denote com-
So in a sense the dynamics is simplified at the cost oP!€X conjugation. We do this to point the way towards the
complicating the kinematics. Yet, since the relation betweerg€neralization of this approach into the quantum domain.
the effective and physical fields can be done once and for alll '€ €asy ability to do this is yet another advantage of this
that cost is very small. The derivation of the dynamical equa@PProach over the more traditional methods. Yet in this paper
tions proceeds again using multiple scales, but is much easi@n® can always take

than in earlier approaches, especially since a divergence-free 1

magnetic field and electric displacement are built into the P PP S .

canonical formulation itself. We will not concentrate here on if

the formulation of the conditions that would be necessary t({
make the multiple scales analysis rigorous; that is, we will
not display all the length and time scale ratios that must b&
established as initial conditions and thereafter maintained by
the solution of the dynamical equations themselves. This
would be done in a way that is now familiar in the literature !l CANONICAL FORMULATION OF MAXWELL'S
[6,11,7,12, and indeed in that respect our approach parallels EQUATIONS

earlier work. Instead we focus on how the difficulties of = the canonical formulation of Maxwell's equations in the
earlier approaches are avoided. We show how the wellapsance of free charges, but in the presence of dielectric
known nonlinear Schinger and nonlinear coupled mode yqia, linear and nonlinear, is an old subject in the optics
equations arise in this approach, assuming a simple Keffieraryre that we will not attempt to review here. In many
nonlinearity; we leave the extensions to treat new nonlinéafreaiments complications arise because one chooses a route
propagation effec';s to future communications. to a canonical formulation that begins with a Lagrangian. Yet
The starting point is a canonical formulation of Maxwell's that is not required. Even in the canonical formulation of a
equations in the presence of dielectrics, which we assumgaggical system for ultimate use in quantization, one is only
here are nondispersive and without gain or loss. In ear"eFequired to provide a set of commutatdes Poisson brack-

communications we used a dual potential to affect this, anglyq and a Hamiltonian such that their use leads in the usual
on the basis of that we could provide derivations of the

X ) _~'“way to the desired dynamical equations, and such that the
NLSE [13] and NLCME[14] equations using such effective ,;merical value of the Hamiltonian in the classical theory is
fields in the restricted case of one dimension. While tha

, ) X > ) Equal to the energy. It turns out this is surprisingly easy to do
work could be generalized to higher dimensions, we insteag,, o problem, as we illustrate below.

use a different canonical formulation of the Maxwell equa- A oyr dynamical equations we take the two curl equa-
tions that we give in Secs. Il and Il below. This is an ap-ions of Maxwell
proach free of the introduction of any potential fields at all, '

o arrive at the actual classical equations intended; at the
lassical level adopted here the order of field quantities in the
arious products that appear is irrelevant.

and is therefore simpler than the dual potential approach, or JB
others. On the basis of this we introduce our effective fields 3 =V XH, i —VXE, (1)
in Sec. IV, and show how they can be used to derive the
NLS_E. In Sec. V we tu_rn to the NLCME. _ _ treating the divergence equations
Since our treatment is based on a canonical formulation of
the electromagnetic fields, we can easily explore the physical V.-D=0, V.-B=0, 2)

symmetries associated with conserved quantities of the effec-

tive fields. This cannot be done in any straightforward wayas initial conditions. If these are satisfied at some time, and
with conserved quantities of the more traditional slowly the fields evolve according to E(L), then they will be sat-
varying envelope functions. We illustrate this in Sec. Vl.isfied at all later times. Formally one can restrict oneself at
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the start to the class of field3(r,t) andB(r,t) that satisfy ~ To construct a canonical formulation of the electromagnetic
Eq. (2); in practice, this is most easily done by introducing field we now simply require a set of Poisson bracket rela-
modes that satisfy Eq2), as we do in the following section. tions (or alternately commutatorghat yield the dynamical
Within this framework this suggests thB(r,t) andB(r,t) ~ equations(1) as a consequence of Hamilton’s equations us-
should be thought of as the fundamental fields, &fd,t)  ing the total energyH as the Hamiltonian. The appropriate

andH(r,t) as derived fields. equal time commutation relations are
To be able to integrate Eg&l) we need constitutive rela- _ _ _ )

tions that related and E to D andB. Neglecting magnetic [D'(r),D!(r")]=[B'(r),B'(r")]=0,

effects we have
) ) o0

B(r,t)=ugH(r,t), [D'(r),BJ(r’)]=iﬁs"JF[ﬁ(r—r’)], 7
r
D(r,t)=¢gqE(r,t)+P(r,1), (3

wheree'l is the Levi-Civita symbo[18]. Taking these as
where in vacuunP(r,t)=0, and in a dielectric it must be our fundamental commutation relations, it follows immedi-
specified in terms of other fields so that E#j) can be inte- ~ately that we recover Ed1) using Hamilton's equations
grated. HistoricallyP is given in terms ok, but we want to

understand® as a function oD: . dD
ifi—==[D.HI,
Pi(r,t)=T(r)Di(r,t) +TI™(r)DI(r,t)D™(r,t)
+TU™(HDI(r,H)D™(r,t)D(r, )+ ---, (4) 9B _
3 i% o [B,H], (8

where we assume that a perturbation approach to the nonlin-

ear optical response will suffice. Here superscripts indicatgvith Eq. (6) as the Hamiltonian.
Cartesian components that are to be summed over if re-
peated. By allowing thé’s to depend on position we allow
for an inhomogeneous dielectric, but the response is taken to
be local in both space and time. From the point of view of an  In the limit of weak nonlinearities it is useful to build on
underlying microscopic theory, this implies that any frequen-the solutions of Maxwell’s equations that obtain in the ab-
cies of interest are well below any resonant frequencies ofence of nonlinearity. To do so, we consider a linear isotropic
the medium[15]. In this limit theI"s are invariant under a medium for which we would normally write

permutation of their Cartesian componeft§]; this we as-

sume as well. x(r)

IIl. MODE EXPANSION

Standard arguments in electromagnetic theory lead to an P(r,t)=eox(r)E(r,t)= D(r,t),
. 1+ x(r)
expression for the energy densjtl7],
so that
h=J H'dB+J E-dD. (5)
ril ()= 5 n(r)y—1
Note that when Eq94) and(3) are used in this expression 1(n= n2(r) '

we require the permutation symmetry of ths so that the

integration implied in Eq(5) is independent of integration where we have introduced the local refractive indé€x) as

Fitr;’ Is thus wfeltlhdefilne(:, and cant.bef.dlc()jn(.e. Ir?e result for thae positive square root ¢+ x(r)]. The approach outlined
otal energy of the electromagnetic Tield in the presence Ofare can pe easily generalized to linear media with more

the dielectrics is complicated constitutive relations. We can then write our full
1 1 Hamiltonian as
H=—fdrBi rBi(r +—feri rDi(r
S0 (r)B'(r) D2 (r)D'(r) L | . | )
. o ' H=H0—3—80J drD'(r)I'5™(r)D!(r)D (r)—4—80
——f drD'(r){(r)DI(r)
280 . - .
. xfdrD'(r)Fgm”(r)DJ(r)Dm(r)D”(r)+~-', 9
——f drD'(r)TY™(r)DI(r)D™(r)
380 .
with
1 _ N _
- i ijmn ] m n N . .
480f drD' (T I™(r)DI(r)D™(r)D"(r) + D'(r)D'(r)

1 . . 1
HOZZ_MO.[ drB(r)B(r)+2—80f er- (10)

6)
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The linear modes we seek are solutions of the dynamicgbrocedure to guarantee orthogonal modes. From Ej).we
equations where onli, is used as the Hamiltonian. Using then find that theéD,(r) are orthonormal according to
this in Eqg.(8) we generate the usual linear Maxwell equa-

tions DL (r)-Dg(r)  ho,
j dr = 5 Bup (19)

aD(r,t) 1 gon“(r)

7t = —VXB(r,t),
Ko In terms of these stationary solutions we can write arbi-
trary D andB fields as
JB(r,t) 1 D(r,t)
=——Vx , (10

at €p nz(r)

D(r,t)=2 C{P()D4(1),
and look for stationary solutions of these equations, ‘

D(r,t)=Da(r)e‘i“’at+c.c., B(I’,t)=2 CgZ)(t)Ba(r)! (19)

B(r,t)=B,(r)e '“'+c.c., (12)
where to guarantee the realitidermiticity) of B(r,t), and
where c.c. stands for complex conjugate, for which @)  p(y t) we requirec =)' andc?=— (@), This
require can be satisfied by introducing new mode amplitualesvith
— i@ oDy (1) =V XB(r), no {estrictions, but such thatV=a,+a’, andc?P=a,
—a, . We then have

Da(r)
n?(r) |

From these we find the so-called “master equation” that
B,(r) must satisfy,

lw,eoB,(r)=V X

13

D(r,t)=>, [a,(t)Dy(r)+al(t)Dx(r)],

B(r,H)=2, [a,(1)B,(r)+al(h)BX()]. (20

2

Wy

= —2B,(1). (14)

C

VXB,(r,t)

v
. n2(r)

Using Eq.(20) in the equal time commutation relations for
D(r,t) and B(r,t), Eq. (7), we find equal time canonical
For w,#0, solution of this equation subject to the diver- commutation relations for tha,(t):

gence condition

[aa 1aﬁ] = 01
V.-B,(r)=0, (15
. [a,.a5]= 5, (21)
together with theD_(r) that can be found from Eq.l3),
leads to a pair of fieldéD,(r),B,(r)) that identify a station- g hgtituting the expressid®0) into the expressiofi10) for
ary solution of the linear Maxwell equatior{¢), and that Ho we find
also satisfy the divergence conditio®). We associate a
positive w, with each of these solutions, which we call a
mode Using the complex conjugate of Ed43), we find that Ho= E hwaazaa . (22
for every mode(D,(r),B,(r)) there is another mode “

(D, (1),B,,(r)=(D*(r),—B*(r)), (16)  The other portions of the full Hamiltonian can be found by
“ “ substituting the expressiori0) for B(r,t) and D(r,t) into
with the same frequency, = w,,. Eqg. (9). Using the Hamiltoniar{9) expressed in terms of the

Since the operator on the left-hand side of Etg) is mode amplitudes via Eq0), the commutation relations
Hermitian, the solution8,(r) associated with differend,  (21), and the Heisenberg equations of motion,
are orthogonal, and we normalize them according to da.(t)
a,(t

. ifi =[a,(t),H], (23)
f drBa(r) Bﬁ(r):ﬁwaﬁaﬁ’ a7 dt
Mo 2

we recover Maxwell's equationd).
whereé, s indicates a Kronecker delta. For an infinite system  We now specialize to a three-dimensional photonic crys-
such as an idealized photonic crystal, we temporarily assumtl, wherein the index of refraction is periodically varying
“box” normalization by taking the integration in such equa- such than(r+R)=n(r) for any lattice vectoR. The index
tions to range over a normalization volume. For degenerate then consists of a crystal wave vectoand a band index
modes we use the usual Gram-Schmidt orthogonalizatiom. Passing to the limit of an infinite crystal, the crystal wave
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vectork varies continuously through the first Brillouin zone ‘
and, as we show in the Appendix, our field expansi® Ho=2> J dk7 o m@mi@mk - (30
are replaced by "

Although more general nonlinearities could easily be in-

D(r,)=2 f AK[ @pm(t) Dy (1) + a8 (1) Dy (1)1, cluded, we will here consider only a Kerr nonlinearity with
m the periodicity of the lattice,

ijmn —_Tijmn
B(r,t)=§ Jdk[amk(t)Bmk(r)+aLk(t)B*mk(r)], I3 =37 (r+R).

(24)  Then the nonlinear part of the Hamiltonian becomes

our commutation relation€1) are replaced by HyL = — EJ drD/(r) U™ (r)D(r)D™(r)D"(r),
0

[amk!am’k’]zoi (31)
[amk ,a:n,k,]: Smm O(k—K"), (25)  and the full Hamiltonian is
with mode functiongD,(r),B(r)) normalized according H=Ho+Hy.. (32
to
In the following section we use E@32) defined in terms of
DX (1) Doy (1) oy , Eqs.(30) and (3_1) as our Hgmllto_glan, \lNhICh we su_bject to
) =— Sy 6(k—K"), various approximations to describe pulse propagation.
80n
% (r)-B " & IV. EFFECTIVE FIELDS AND THE NONLINEAR
. et w
f dr mk Mom k _ 2mk S S(k—K'), (26) SCHRODINGER EQUATION

In this section we use the Hamiltonian formulation of
where the integrals range over all space. We have usdiaxwell’s equations in a periodic medium to generate pulse

Bloch’s theorem to write propagation equations in the presence of a Kerr nonlinearity.
We will stop our derivation at the level of the nonlinear
2% d ik-r Schralinger equation, modified to include a shock term. But
Son wmk ik-r_ mk(r)e . . . . . . .

Dmk(N) =\ —=5 DPm(re"'=—=——, equations with higher-order nonlinear, dispersive, and mixed
167 87 terms could also be derived using the same approach. Our

_ focus here is not the derivation of a new equation relevant in

oh ©mk . b(r) e’ a particular physical situation, but rather to demonstrate that

— ik-r— . . .

Bmk(r) = Wﬁ’mk(r)e I (27)  the approach we advocate here makes identification of such

equations much easier than has been possible in the past.
To do that it is useful to identify the traditional approach
7] in our present notation. One begins with the general
expressiong24) for the fields and the mode coefficier{&?)

to write

wheren is a reference refractive index that can be chosen afS
convenient, and where thB,(r) and B, (r) (see the Ap- ’
pendiX have the periodicity of the lattice,

D(r)=Dp(r+R),
D(r,t)= E f dka,(t)Dyk(r)+c.c.

Bik(r)=Bpk(r +R), (28)
for any lattice vectorR; the d,(r) and b, (r) share this dk .
property. The constants preceding the periodic functions in :é \/ggamk(t)dmk(r)e' e

Eq. (27) are set so that the periodic functions are normalized

according to =
g =D fo(r,)dre®r—end e, (33
m

dar
J; Bmk(r)’Bm’k(r)zamm’a

ellVeell introducing a set of amplitudefs,(r,t) associated with each
— band at a chosen carrier wave vedtorThe idea is that the
f . n DX (1) -D ()= Sy (29) effects of the underlying spatial variation in the linear optical
ceVeell n(r) mk m’k mme properties are contained within tlog,(r). By “renormaliz-

ing” the plane wave used in the uniform medium with this
for eachk, where we denote the volume of one unit cell of factor, one can hope to identify amplitudég(r,t) that are
the medium by .. The part of the Hamiltonian describing indeed slowly varying[19], and this is indeed possible
linear dynamicg10) takes the form [20,6,7.
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If one is interested in propagation far from a band gap, otto k. After all, if one goes to a numerical code to determine
near or in a band gap but close to the band edge, then one tife d,(r) one finds that the code will in general return
the amplituded ,(r,t) dominates in a multiple scale analy- functionsd,,(r) that have a random variation in their phase
sis. It is sometimes called the “principal component,” and from point to point in the Brillouin zone, even if those points
the other amplitudes, or “companion components,” areare arbitrarily close. Of coursed(r,t) that is slowly vary-
slaved to it. Keeping lowest-order terms in diffraction, grouping in space can still result from E¢R4); this just requires
velocity dispersion, and the nonlinearity, a nonlinear Sehrothat there be a rapid phase variationagfi(t) from k point
dinger equation for the principal compondii(r,t) results.  to k point that “undoes” that ofd(r).

We refer to the above-cited works to illustrate how compli-  This raises an important point. Functiogig(r,t) that are
cated these kinds of derivations of such a simple result caslowly varying in space—which clearly requires not only a
be. small range of «| for significantly contributingaics (1),

The strategy we adopt here is to avoid working directlybut also a smooth variation in their phases—correspond to
with fields such ad(r,t) or E(r,t), as is done in the ex- fields D(r,t) that are slowly varying in space only if the
pression(33), but to work rather witteffective fields g(r,t) phases of thed,(r) are slowly varying as one moves
[21], through the Brillouin zone. We will want the slow variation
of the g,(r,t) to be associated with, and to guarantee, the
slow variation ofD(r,t), and so we requird,,(r) that are

smooth functions ok as we move about=k. To ensure
this, we assume that the,, (r) are constructed from their

Here we have again picked a reference crystal wavevéctor values ak by ak-p expansion. To do this in a way that the
and although the integral in E¢34) in principle ranges over d_,(r) are analytic functions df throughout theentire Bril-

the whole Brillouin zone, a smallness parameter in our aptouin zone is not trivial[22]. But since we assume that
proach will be the range ovek over which contributions |am(f+:c)(t)| are Signiﬁcant 0n|y for Sma|lK| we can use
from anici (t) are significant; we will assume that the standardk-p theory, modified from its version in electron
gm(r,t) of interest are slowly varying in space over distancesphysics to take into account the differences that arise for
on the order of the lattice spacing. These effective fields arghotons[23—26. We will turn to the details of this in a
“canonical” in that they satisfy simple equal time commuta- future publication, where we will also consider the nature of

dr .
gm(r,t)Ef \/ﬁam(kln)(t)e”"r- (34

tion relations, such an expansion about a point or line of degeneracy.
' 91=0 So in older approaches the relatigd3) of the slowly
[9m(r. 1), G (1", 1)]=0, varying fieldsf(r,t) to the physical fields of interest was
T , straightforward; in this approach the relation of the effective
[Gm(F ). Gy (17 D) 1= Oy ST =17), (39 fields g(r,t) to the physical fields of interest it is more

complicated. For applications to finite media, equations such
as Eq.(36) would actually have to be implemented to con-
Snect fields across interfaces, since it is the Maxvgaltus
(boundary conditions on those physical fields that must be
satisfied. But by accepting more complicated relationships
between the physical and effective fields, whkr@ theory
dk must be used, we drastically simplify the derivation of the
D(r,t) =2, f —==an(Ddm(r)e* " +c.c. dynamical equations for the effective fields. In the linear
m NCES regime we can completely avoid usikgp theory, and when
q it does appear in the nonlinear regime it is in a more benign
_ aiker K — — T way than in earlier approaches.
—© ; f V8w Gnc(F)an(ics o (DETF C.C. To see this, look first at the linear problem. We employ an
1) expansion of the dispersion relation for each band,
_ ik i),y 29mlT _ L
=12 (dmﬂ”gm(“t)”mﬁ” a0 ) o= omict (ki — k) o\n+ 3 (k= k) (K~ k) o+ -,
(38)

which follow directly from the commutation relation25).
However, their relation to the fundamental fieldér,t) and
B(r,t) is more complicated. Again turning to the expression
for the fields(24) and the mode coefficient7) we can
write

+c.c., (36)
where the expansion coefficients in the dispersion relation at
where to obtain the third line we have expandkg; ,(r) fappear with

aboutk=0 and performed a partial integration, and we have

put (i) Ik
a Cmk| T )
() y— _; k
Y1) = u(ak_dmkm)_. (37
j K 5
. .. . . . . (ij) J Wmk
While this is formally straightforward, care is required in the W= Kok | (39

very definition of the derivative of that quantity with respect
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where for simplicity we assume that our bands are nonde- Having so easily disposed of the linear terms, we now

generate ak and we let the number of Superscnpts S|gn|fy move to the inclusion of the nonlinear effects. Here we must
which derivative is indicated. Using this in our linear Hamil- use our expressio(86) for D(r,t) in Eq. (31) for Hy, . We
tonian (30), and partially integrating the resulting terms, we consider the standard example of a frequency spectrum such
find that at thek of interest only one amplitudgy(r,t) is sig-
nificant, and we assume that we are sufficiently far from any
) (,) ang phase-matching resonances to neglect third-harmonic gen-
Ho= ﬁz wmkfdr|gm| += 2 FGm—C-C- eration into another band, although that could easily be in-
' cluded. Without pausing to make the multiple scales analysis
rigorous, we will be interested in nonlinearities only suffi-
+e (40 ciently strong in their effects to be comparable to th%kd

term above Eq(41), or at most, if that term is anomalously
(I)

agl 9
——E (L ar| 2mBm o
arl or'

The linear dynamics for thg,(r,t) then follow from small, to thew,~. Thus the fastest time behavior @f,(r,t)
will be exp(—iwmn) and the leading terms ikly,_ with

. d9m respect to the dynamics gf,(r,t) will be those that involve

|ﬁ7=[gm,Ho], two terms from the sefigy(r,t),dg,(r,t)/dr;) and two from

the set(gm(r t), agm(r t)/arj). The kind of approximation
which is simple to work out because thg(r,t) satisfy the where one keeps only these leading terms is sometimes

simple commutation relation@5). We find called a “rotating wave approximation.” The other terms
could also easily be kept, although it is easy to confirm that

99m _ (i) ¢9Qm N i (i) 9°Om N for k at an arbitrary point in the Brillouin zone they will not
ot —lomGm— wmk 2"’mk origri in general survive the spacial integration in the expression

(42) (31) for Hyy; however, if they do survive their effects could
easily be included by standard multiple scales techniques.
that is, in the linear regime thg(r,t) evolve completely We keep only the leading terms and, since the
independently. This isottrue for thef ,(r,t), since compar-  dgny(r,t)/dr; terms in the expressiof86) for D(r,t) are as-
ing the expressions fdd(r,t) in terms of thef(r,t), Eq. sumed to be much smaller than thg(r,t) terms, we keep
(33), and theg,(r,t), Eq. (36), we see that only approxi- only contributions taHy, involving one derivative term. Fi-

mately do we have nally, we simplify those contributions following an approach
- used earlier in one-dimensional stud[&g 14). We note that
fn(r, 1) ~gm(r,t)e'mic; (42)  the periodic functionsl,i(r), ¥ Xr), andT'i" (r) can be

to higher order there are contributions from the othereXpandEd in terms Of. reciprocal lattice vector_s Thus their

. (i) . products that appear iHy, can as well. And since by as-
9m(r,1), since Wh_en they;,(r) are e>_(pa_nded in terms of sumption the range dk| appearing irg,(r,t) is small, only
the dpi(r) there will be many nonvanishing terms. We can, the contribution from the zero reciprocal lattice vector of the
of course, write th@v(') and thew(") in terms of integrals of  product of periodic functions will survive. Employing all
the mode fields; usmg p theory, for example, we can write these considerations, we find

0= vmm(k) where the velocity vector,,(k) for bandm

@k
t bit ho
at an arbitrank is HNL:_Eamkfdr|gm|4 _( (p)fdrgmlgm|2—+cc
dr (45)
vl CREED X Hm()], (43
n-JcellTeell where
where for notational convenience we have introduced dimen- 3
sionless fields periodic over the unit cell that we associate A= f rin(r)
with the electric field and magnetic displacement, heg celchen
[ X [N T L)1 1> Ay (1),
Emk(r)=——Dpy(r),
n’(r)
Hoe(1) =By (). (44) Mk fieg)cellVeen
Equations such as E¢43) are of course exact, and are un- x[d! mDT* [d' H{r)]*d {r)y'(p)(r)

related to approximations associated with a derivation of

equations for effective fields. Whereas in older derivationsThen, since we are keeping only one band in our calculation,
[6,7] they had to be used in the course of such derivationsyith the inclusion of linear terms up to and including those
here they do not arise at all. involving w( . our total Hamiltonian becomes
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ih ag‘r

_ (i) m
HNLSF:hwka dr|gm|2+?w”l‘ij dr( ar! gm—C.C.) @m

hoo ag;q IGYm h

(u_)f _
——w dr| — —+c.c.|— =z«
4 mk (ar' ar! ) 27 m«

fdr|gm|4——( a0 drgwlon? 2 +cc.. 2
(46)
A
Using this in our equations of motion,
ﬁﬂ: HNLSE] " 4 5y > 4
[ [Om. ' A A A sy
the application of the commutation relatiof85) for g, and @
gl leads to
9m @ 9%9m T Gy 9°Im
Tt emdnT one T S onc T

il

o 900000000000
| " 0000000000000
+||gm| a’mk'{'2I Im( )_ Om- (47) .'."‘.‘.’..
9000000000000

The first three terms on the right-hand side of this equation
are linear, and describe the linear phase accumulation, grou
velocity, and group velocity dispersion experienced by the

field. The first nonlinear term describes the familiar nonlin- J8C N I 3 N 3 X X X C X X )
ear self-phase modulation wherein the intensity of the pulse & W W N I X I X C X X X X )
()

causes an effective correction in its own phase accumulation . ‘ . . . . . . ‘

The second nonlinear term is often called a “shock term,”

and describes the nonlinear correction to the group velocity . . . . ‘ . . . . . ‘ . .

of an intense pulse. This intensity-dependent group velocity ”

can lead to the formation of a shock front in the pulse enve- (b)

It(r)]pe fun(;tlohn -Lhte form of th'ts shg:ck ttﬁ th'S dtlfferent fro;n FIG. 1. (a) Three examples of optical systems of interest pos-
€ usual shock term encountered in the literature, we re urQessmg periodicity in the direction. From top to bottom, a fiber

to this 'Ssue in Sec. VII. Note that it is only the imaginary Bragg grating, a dielectric stack, and a coupled microresonator

part ofa that appears in Eq47); in fact, using a partial  structure. The particular microresonator structure depicted here is a
mtegratlon Eq.(46) can be rewritten to involve only the periodic two-channel side-coupled integrated spaced series of reso-
imaginary part ofa(p) as well. nators, or periodic two-channel SCISSOR strucf&®,2g. (b) A
line defect waveguide in a 2D photonic crystal slab. The 2D pho-
tonic crystal slab is composed of a periodic lattice of cylinders of
V. EFFECTIVE FIELDS: 1D STRUCTURES AND THE different refractive index from the background material. A number
COUPLED MODE EQUATIONS of missing rows of cylinders creates the defect waveguide. This
structure has full periodicity only in thedirection.

We now examine the situation where the medium of in-
terest possesses periodicity in only one direction. Examples
of such a system are fiber Bragg gratings, dielectric stacks or _ + *
coupled microresonator structurfBig. 1(a)], all of which D(r,t)—% fdk[amk(t)Dmk(f)+amk(t)Dmk(f)],
possess periodicity only in thedirection. Also, the system
shown in Fig. 1b), which consists of a two-dimensional pho-
tonic crystal slab into which a line defect has been formed, is B(r,t)= E f dk[amk(t)Bmk(r)+amk(t)B ()], (49
only truly periodic in thez direction. We label the period in
the z direction byL ;. The modes of interest are now indi-
cated by a band indem and a continuouk that ranges over our commutation relation€1) are replaced by
the first 1D Brillouin zone. We show in the Appendix that for
this geometry the field expansiof®0) are replaced by [amk.@mk’ ]1=0,
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[amk,ale,]:%m, S(k—k'), (49) Nonetheless, the approach identified in the last section
m can be implemented here. We can introduce effective fields
with mode functiongDy,(r),Bmi(r)) normalized according associated with the different bands,
to

dx .
zt Ef —— Ak 0 (D) EE,
D:]k(r)'Dm’k’(r) hwmk , gm( ) 1_277 m(k+ )( )
dr 5 = Sy 8(k—Kk"),
eon™(r) which satisfy the commutation relations
B* r)B ’ !(r) hiw z,t),0.(2',1)]=0,
j dr mk( . m’k _ 2mk5mm15(k—k,), (50) [gm( ) Om ( )]
0
[9m(Z,0),00 (2, 1)]= Sy 8(2—2), (55)
where the integrals range over all space, and we have used
Bloch’s theorem to write and if we consider an electromagnetic field that is character-
ized primarily by the effective field associated with one band
goNn ﬁwmk . mk(r)e‘kz we can repeat the derivation in the preceding section to lead
D)=\ —7-a Pmur)e el= =z immediately to a Hamiltonian
i7 [ dwmy agh
fiw  bpdn)e* HNCSE= o [ ddignf2+ | | [ dz| D, —c.c.
Brid1) = \/ o (neike= "M (51 2\ ok )i T\ oz
mKk A7A mk \/ﬁ ’
f azwmk 99m IOm h 7
whereA is a nominal area chosen for later convenience. The AR J' 47 EJFC-C- 5 %mk
Dmilr) and B, (r) have the periodicity of the structure, k
h
Dni(T)=Dp(r +2), XJ dZgml*— _(~(z)j dzgn|gm|2—+c c)
Bi(1) = Bpy(r +2), (52 (56)

whereZ is any integer times .. 2. The constants preceding where
the periodic functions in Eq51) are here chosen so that the
periodic functions are normalized according to

3 d . .
e | | xa ) @) )

dz [ dxdy cell-cel
k
Jeuiio] "R BB B = <y,
dz [ dxdy n? ~@»_© f ijnl i (] *
jcelchellf A nr) 1) D)= Sy - (539 “mk” Figo ) celllcen xS () A1) (1)
I(2)
for eachk; here the integral ovez only ranges ovet ., xd, ") Vi (1) (57)

but the integral ovex andy is over the wholey plane. The
part of the Hamiltonian describing linear dynami¢t0)
takes the form

and

(z 9
Y= e dmdn) | (59
k
Ho=2 f dkh @@ @mk; (54
m The nonlinear Schiinger equation that results, including

and again we restrict ourselves to a Kerr nonlineaf&y), the shock term, is then

but with aI'J™"(r) that will only be periodic az ranges

agm Iomi| 9m i azwmk (929m
overL.q, LT
cell ot —lomdm— ( ok ) 2( K2 )?(922
™) =rim™(r+2).
. ~(Z)__
Note that while theD,,(r) and By (r) introduced in this +ilgnl (amk+2' Im(a,, )gm (59)

section are dimensionless, as are the corresponding quanti-

ties defined in the last section, other quantities, such aBut our primary concern here is when there are two bands
Dmi(r), dn(r), andag have different units as defined in sufficiently close in frequency that it is not sufficient to con-
this section from those in the last, simply because of thesider the effective field from only one band; effective fields
one-dimensional nature of the band structure here. from both must be included. This is the situation where one
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w where vy, and 7, are assumed to be real, and satisfy
4 2, 2
vt me=1; (62)
we set their values below. From the definitid64) of the s,
ands,,, and the commutation relatior{&5) of the a;, we
find that
T T ’
OF% : [Sic St 1= [Sucr St 1= S(k— k'), 63)
W A with all other commutators vanishing. It is ths., for i
0 T =u,l, that we will use to build our basic effective fields in
this problem, writing
w Y
Tk,
dx ikz
S(ZD)=| —==Sik,+~(D)E (64)
N2
Next we assume that to a good approximation the disper-
> sion relation about the Bragg frequency can be considered
k symmetric; we can then write
0
A
FIG. 2. A schematic diagram of the photonic band gap and first W= wot > +6(k),
and second bands at the edge of the first Brillouin zone. Parameters
relevant to the coupled mode theory are indicated. A
. , o=~ 5 ~ 0(«), (65
expects coupled nonlinear mode equations to result. In ear-

lier derivations those mode amplitudes were associated with . .
slowly varying envelope functions modulating Bloch func- where we have introduced the wave number detuning
tions at the band eddgé,29]. In our approach, we will see c=k—k (66)
that the amplitudes in the NLCME are associated with the o

effective field amplitudes of the two bands, but as combinedp practice we assume that for wave numbers of importance

by a Bogoliubov transformation. we can takeé(x) to be quadratic ink, the coefficient of
Pulses of interest here are those whose frequency conte@ich then follows fronk- p theory; a symmetric dispersion

is essentially contained in two bande=u,l, where m  relation indeed then results if the far bar(@s., those other

=u(l) refers to the band just abovkelow the given pho-  than| andu) make a negligible contribution in the expres-

tonic band gap. To characterize the band gap we define th§on for the effective masgL4]. Within these approxima-

gap widthA and the Bragg frequenay,, tions, we have
AE(")ukO_wlkO)a K2 [ 9wy k%[ Py |vg|2
0(k)= > > ) 2 :TKZ’
©0=3(0ui+ o), (60) M e M e
(67)

where @yk, is the frequency at the upper edge of the band .

gap,wy, is the frequency at the lower edge of the band gapWhere from ak- p expansior{14] we have

and|ko|. can take on the value 0 at/L ¢, depending on the c dz [ dxdy.

photonic band gap of interest. The quantities Wuky Diky» v ::f L_f A~z ngSko(r)XHlko(r)]y (68)
andA are indicated in Fig. 2. The photonic band gap shown cell-cell

n
in the figure is the lowest-order gap, so thatl, u=2, and which has the dimensions of velocity and plays the role that

Kol = /L cen. a “velocity matrix element” between the bands would in a

Because both _the analysis .Of the length and_ “”?e s.cale}%eory of electrons in a periodic potential. We are now in a
necessary to derive the equations, and the derivation itsel

are very similar to those previously presented for a purel)posr[Ion to choosey, and 7, which we do according to

one-dimensional systeifi4], we here provide only a brief A+ 0(x) )
summary of the results. We start by introducing mode ampli- N=\T——=— =S k) \/———— (69
tudess;, ands, via A+26(x) A+26(k)

_ - S0 as to guarantee
ayk= YkSukt ! 7kSik » 9

; w 72+w 7]2=w
A= YiSik T 1 7kSuks (61) uk Pk Ek k™ Lukg?
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DYt OuTR= O (70)

Then, writing the portion of the Hamiltonia{b4) that gen-
erates the linear dynamics in terms of heands, , we find

CME
HL :ﬁwOJ dK(SI(k0+K)SU(kO+K)+Sr(k0+K)S|(kO+K))
A T +
Tt AR (Sy(ky-+ i) Sutky-+ k) ™ Sikg+ 1) S (ko-+ )

: t t
-1 ﬁ|Ug| f KdK(SI(k0+ K)Su(kg+x) ~ Su(kg+ 1) Sl (kg + )
(71
or

HEVE= o, | ddsl(21s,(2+5](2)5(2)]

hA
5 f dZsi(2)su(2)=5/(2)s1(2)]

hlvgl . \asu(z) +_ 98(2)
_Tf dz<s|(z, 9z —s,(2) 9z +c.c.|,

(72

where we keep only the contributions from bandndl, and
we have assumed that ferof importance we hav(x)|<A.
This last inequality implies thaty,|>| »,| for k of impor-

PHYSICAL REVIEW B9, 016604 (2004

@ _ 3 dz dxdyl'1vs(z) d! . (r)d!
mnpq ﬁso mky nky

ceIII—ceII

X(r)d,”)ko(r)dako(r),

with m,n,p,q each equal to one ¢fandu, and we have used
the fact that thejmko(r) are real sincé, is at a band edge.

Because the Bloch functions there are standing waves, the
coupled mode equations that thg(z,t) satisfy are not the
same as the coupled mode equations most often used in the
literature. Therefore, instead of using thg(z,t), we intro-

duce new fieldsS..(z,t) that are associated with traveling
waves:

[s1(z,t)Fisy(z,1)]

V2

Using the commutation relation$3) for the s, (z,t), it is
straightforward to verify that th&.. satisfy

S:(z,t)= (74)

[S.(z,t),SL(z/,t)]=8(z—2"), (75)
with all other commutation relations vanishing.

We now use thé&.. to rewrite Eqs(72) and(73); we find
a total Hamiltonian

HOME=HEMEL HEME, (76)

tance, and thus to very lowest order in all our inequalities thgyith

displacement field48) can be written as

D(r,t)mf Ak (Sy(ky+ ) (1) Duky (1)

+Si(ky+ 1) (D) Dk (1) +C.C)

=[su(z,t)dyi, (1) +51(z,t)dy (1) ]e*o*+c.c.

This is the only order we keep in evaluating the nonlinear
term (31). Using the considerations discussed before Eq.

(45), we find that here Eq.31) reduces to
fi fi
HEEAE: - Eauuou |3u(2)|4d2_ 5 i J |5|(Z)|4d2
fi
=5l f ([s/ (@) ’si(2) + [sl(2) s (2)
+4[sy(2)|%|s1(2)|H)dz—Frayy,
X J [si(2)]s1(2)|?si(2) +5{(2)|51(2) |*su(2)]dz

- ﬁaluuuf [Sr(2)|5u(2)|23u(2)

+sl(2)[su(2)|%s1(2)1dz, (73

where

hA
HEVE= o [ ddls, @I +]S (@5

xf dz[s*_(z)s+(z)+si(z)s_(z)]—ih|vg|

2
xfdz

(77

dS.(2) i, 0S.(2)
T—S_(z) 7z )—c.

(81<z>

and
HRL =~ f%f d4[S.(2)|*+[s-(2)|*
+alS. (@S (2)P1—has | d2SL(2)5.(2
+S'(2S_(2)1[S"(2S:(2) +SL.(2)S_(2)]

—ihagf dZ S (2)S,(2)+S" (2)S_(2)]

X[S'(2)S,(2)-SL(2)S_(2)]

—f%fdz{[si<z>]283<z>+[81<z>]282_(z>}
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ihay, ‘ b2 . b2 (76). For the NLSE, the infinitesimal quantipycan be taken
> J dZ{[S’(2)]°S{(2)—[Si(2)]°SZ(2)}, to be either a fixed phase or v-k, wherev is a constant
vector; for the CMEp=0 or vk, wherev is a fixed number.
(78 These invariances lead to conserved quantfti, as we

now demonstrate. To do so, we define new coordinate and

where momentum variables, which are real
ag=7(ayuuut am +2ay), -
ay=7(am ~ ayuud, Pe= \/;_5(§I+§K)'
QZE%(auuuu'l' ay —6ayun), P
az=3 (o + ajuy), ™= \E(gl—g), (82)

Q4= ay) ~ Ayyu- (79 where w=wmyr(wo) when §K:am(F+K)(Si(k0+K)) for the
NLSE (NLCME). In terms of these, the Heisenberg equa-

The field dynamics are recovered from the Heisenberg equa -t motion become

tions of motion,

s d¢. oH dm,  dH
ih——=[S. HOME), (80) dt om, dt 9o, (89

K

which then yield the nonlinear coupled mode equations ~ and the infinitesimal transformatiori81) become

L 0S. dS. A 1
0=i— i||vg|g—w054_,+554—, ¢K_)¢K_p%ﬂ-m

+a0(|si|2+2|SI|2)S¢+CY1(|S+|2+|S—|2)Si _
Te— Tt wpd, . (84)
+ay(STS.+SLS)S. Fias(|S, [P +[S_[?)S;
) + T ) 2 Under these transformations the Hamiltonian becomes
Fiag(SLS.—SLS:)S. 4+ (ayFia,)SLSE.
. . H—H+ 6H, (85
Early works [6,14] were restricted to unit cells that had
center-of-inversion symmetry; in such a case thg and  \yhere, because the Hamiltonian is invariant under the trans-

@y terms vanish, leading to vanishing; and a,. More  formation, 3H=0. One can also determine an explicit expres-
recent work 30] has made use of unit cells where this is notgjgn for sH:

the case.
aH aH
VI. CONSERVED QUANTITIES 5H=Ei de Wﬁ%ﬁﬁ&u

An advantage of a Hamiltonian formulation is that con-

served quantities can be identified by looking at symmetries  _ J E % —%
2 dx — Tt Tt T bt P

of the Hamiltonian. While this has been discussed earlier in 7
Refs.[13,14], we can identify here an approach that holds for

both the NLSE and the NLCME, and would hold as well for d 1 > — . d t
their generalizations to include higher order terms than we  ~ ¢ EI f dx 57T,<+ 0P (p= at Z J dxdidp,
have done here. For definiteness we consider the three-

dimensional NLSE presented in Sec. IV, and so the Hamil- (86)
tonians we consider for the NLSE and NLCME are Eg$)
and(76), respectively. where we have used E¢B2) to convert from thep, , 7, to
We begin by noting that both these Hamiltonians are inthe {,. Here we write the result specifically for the NLCME
variant under the infinitesimal transformation example, where the sum is over the fields for the different
_ i=u,l. There is no sum in the example of the NLSE, and the
{i— ¢, €7, (81) integration involved is instead ovetk. In both cases the

summation-integral on the last line is conserved, since its
where /, refers either to they . that form the Fourier  time derivative vanishes. This generates two conserved quan-
components that determine the effective fieBd) that ap-  tjties: The first, associated with phase invariafge o), we
pear in the NLSE Hamiltoniaf46), or one of thes;y ...  call the chargeQ; the second, associated with translational
i=u,l, that form the Fourier components that determine thanvariance(p=v-k or vk) we call the momentun®.
effective fields(64) that appear in the CME Hamiltonian For the NLCME, the results are
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B o ) ) uniform (nondispersive medium, withn(r)=n. Our one-
Q_ﬁ“’oj_x(|su| +[s|%)dz, dimensional structure equations from the start of Sec. V can
be applied by simply taking the aréato be a normalization
b o[ area in thexy plane; that is, in integrals such as those ap-
P= > (sﬂ&zs,—s,TaZSUJrc.c.)dz. (87) pearing in Eqs(53) and (57) we take the integral over the

plane to range only over an ar@aThe band indexn can be
dropped, and if we consider displacement fields polarized in

In terms of the traveling fieldé74), the quantities are the x direction we find from Eq(53) the simple result that

Q:thJ (S, [2+]S.[?)dz, D=2, (89)
and then from Eq(57) that
P= E ) SJr 55, +s! E—C c.|dz (89 3eon2C2K2A T
2i Toz T oz o=l 8
k 4A
For the NLSE we find
and
Q:ﬁwmk_f dr|gm|21 ~ |
v &= — =, (90
pj:ﬁ_ ( i aif"_gm&if“) the areaA appearing in these expressions simply because
2i ™ orl ar! |g(z,t)|? is (approximately equal to the energy flux through
that area. With these expressions the Hamiltor{&a®) re-
where here the momentum is a vector quantity. duces to
Of course, the Hamiltonian is itself a conserved quantity
for both the NLSE and the NLCME as well. Including the , i .
Hamiltonian itself, we then have three conserved quantitie$!= ﬁwf dzg|“+ —f dz —g C.C. —CVFJ dz|gp|

so derived for both the NLSE and NLCME. Of thest,is

straightforward to understand, since it represents conserva- ig

tion of energy. The quantity? represents a conserved mo- + :( a?f dzg’;|gm|2_m_c_c'>, (91)

mentum, which arises out of the translational invariance of 2k 9z

the system. Of course, the underlying photonic crystal me-

dium is not translationally invariant; it is only at the level of where we have pub= ck/n, and our dynamical E¢59)

the effective equations, the NLSE and NLCME, that transla-;becomes

tional invariance obtains, and hence momentum is con-

served. The quantity) has often been referred to as the dg € dg . 2 20y

“energy” i ic fi ilel=H— —+t - =—lwg+iadg’g+ —I|g
gy” in the electromagnetic field, whilel=H—Q has ot |z Kk

been called the “Hamiltonian[9,31]. Certainly the quantity

H can be usedvia Hamilton’s equations of motiorio derive =~ More usual equations in the literature given in Refs.
the correct equations of motion for the effective fields oncd 15,32,33, on the other hand, are of a different form,
the carrier frequencw is factored out. However, unlikel,

H does not represent the to_tal energy .in the glectromagnetic —+ = —=iayf|? f+ _k (|f|2f (93
field. We have discussed this problem in detail elsewhere for ot noz

the one-dimensional nonlinear ScHiager equation[13], _ _ _ _ o

and now consider the more complicated situation that arise our notation. The rapidly varying term~i»g) that ap-

in the Hamiltonian formulation of the nonlinear Sctimger ~ Pears in Eq(92) but not Eq.(93) is of course a trivial dif-
equation with a shock term. ference; it can be removed from E§2) or added to Eq(93)

by redefining the field in terms of a rapidly varying phase
term: g=g’exp(—iwt). The more serious difference is the
shock term, where Eq92) seems to be missing one of the
The nature of the shock term that appears in our nonlineaerms that would result from taking the derivative in Eq.
Schralinger equations, for example, in the one-dimensional93).
example described by E¢9), is different from the kind of In fact both equations are correct, if understood to be at
shock term that often appears in the literature. In this sectiothe same level of approximation; the fielglandf are simply
we address that difference and its physical meaning, whichlifferent. To see that we need to briefly review the derivation
highlights the difference between our approach here and thef Eq. (93), which is not completely trivial. While this is
more usual one of deriving slowly varying envelope func-usually done in the literature by beginning with the electric
tions. To focus on that we consider the simple limit of afield as the fundamental field, for comparison with our work

?= iy (92

VIl. DIFFERENT SHOCK TERMS
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we do it here in terms of the displacement field. In the one-and when this is used in E¢93) and terms are kept at the
dimensional uniform medium we consider, the second-ordeappropriate level of approximation, as discussed above, we
equation thaD(z,t) satisfies follows directly from the equa- recover Eq(92).
tions at the start of Sec. Il, and is We note, however, that while the effective fiejfz,t)
satisfies canonical commutation relatiofs5), the field
f(z,t) does not; furthermore, while the HamiltonidB6)
could be written to the appropriate level of approximation in
terms of f(z,t), neither its derivation beginning from Eq.
(98), nor its application with noncanonical commutation re-
lations, would be as simple as the derivation and application
of the Hamiltonian(91), and others in this paper similar to it.
Indeed, the way that terms such as “Hamiltonian”, as
well as others such as “momentum” and “energy”, arise in
the literature in equations such as E@Q) is rather different
than in the kind of canonical approach we have taken here.
To see this in some detail, we reinstate the dispersive term in
our one-dimensional equation. Retaining the uniform me-
dium approximation but otherwise taking= w(k), the re-
lation analogous to Eq99) is

(94

To get an equation similar to E¢Q3) one looks for a slowly
varying amplitude functiorf(z,t), writing
D(zt)=vf(z,)e@ Dt cc., (95)

where we have chosen an overall factor

Soﬁzﬁa
V:
V. 2A

for convenience in comparisons below. Using the an&gy
in the differential equatiori94) we find

. ' dg9(z,t)
f(zt)=€e"“Y g(z,t)—i— +---|, (100
of cat o 20cd 20 02

E‘F:g:laﬂﬂ f+T£(|f| 1:)_*'Tcorrv (96) o . .
n k wherew’ =(dw/dk),; in what follows we will also usen”
=(6%wl/ 9k?);.. Then we have, instead of E(3), the equa-

where tion
i (na*f ¢ o of  _of i J
T = =] -——-=—]. (97) R N SN ey I 2 i~(2) 7 2
corr ZK(C 2 T (922) &t—l—w 57 2? azz+|a§|f| f+iay &Z(|f| f),

107
In going from Eqs.(94) and (95) to Eqgs.(96) and (97) we (103

have neglected the terms ° that result in third harmonic  which follows from our Eq.(59) and the use of relation
generation, as well as a higher-order shock term of the fornt100), keeping contributions to the appropriate order; we
a*(|f|*F)/ 9z, Often, of course, higher-order derivative have reinstated the explicit appearance of the faﬁtfpz)r,
terms of slowly varying envelope functions such as thosgyhich is seen to be purely imaginary from a relation analo-
appearing inf . Eq.(97), can also be neglected. However, gous to Eq(90). As Eq.(59) and Eq.(101) is integrable by
here they must be kept, because in keeping the shock tergeans of an inverse scattering transfdsd]. Thus an infi-

in our equations we keep terms of first order in bathand  njte set of conservation laws can be derived from a recursion
aik1al9z. Nonetheless, at this level of approximation it formula. The first three such conserved quantities, which we
does suffice, in evaluating.,,, in terms off, to use only the have scaled by overall constants, are

first term on the right-hand side of E(@6), and then indeed

even replacel/ gt simply by cn™ 1d/9z when that derivative C :J dz[f|2
is premultiplied byaj.. When this is done and the terms are ! '
collected, we find Eq(93).

The derivation makes clear the difference between the of  oft 2|a%)
fields f(z,t) andg(z,t). From Eq.(95 and recalling Egs. C2=j dz I(fTE_fE) — [f]4],
(89) and(51) we see that the ansai@5) can be written in the @

form :
ot of 3
= — T 44 S =2y 1£12
D(r,t)=d(r)f(z,t)e @ “Ytc.c., (99) Cs fdz{w 9z 9z aid f| oy )]
simply the one-dimensional analog in this simple problem of of  off\ 2 @
the general form Eq(33), while our derivation of the Eq. (fTE_fE + = (im)?f[°|, (102
(92) makes use of the one-dimensional analog of B). w

Comparing these, the relation betwedz,t) andg(z,t) is

f(z,t)=e'* g(z,t)—zl—Pag((;'t) . (99)

and these have been given varying interpretations in the lit-
erature. For example, they have been called the “energy”,
“momentum”, and “Hamiltonian” respectively[32]. In or-
der to compare these conserved quantities of(EQ1) with
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those of Eq(59), we first consider both equations in the limit using Eq.(100 in Eq. (56). Instead, it is better interpreted as

“&({)HO, where they share a common form apart from a@ “charge,” as we have done here, or a “particle number”

trivial phase term, which we neglect below. Then the quan[35]- NLSE - N _
tities (102 take the simple form The quantityC, -~~~ gives the familiar expression for the

momentum of the NLSE in the absence of the shock term. In
NLSE ) this limit, the expression for the momentu@; of f has the
&) :f dz|f[%, same form as the momentub of the effective fieldg de-
rived in the previous section. This similarity is lost, however,
of oft if the shock term is reinstated. In that ca&®, acquires a
C?LSE:J dz( ifTE—if E) term proportional tdf|*, while the expression faP for the
field g is unchanged. Since the integral over abf |f|* is
gft of not itself conserved, it is clear that the expressi'o'n fqr the
Cg‘LSE:f dz( o' — __aﬂf|4). (103 ~ conserved momentum of the NLSE must be modified if one
9z 9z augments it with the conventional shock term. In fact, the
. NLSE _ shock term derived in this paper is the only possible shock
The conserved quantit¢; ™~~~ has been called a Hamil- term involving one spatial derivative and three factorg of
tonian[35], and rightly so, since the NLSELOD) with @2  g' that can be added to the NLSE without changing the
=0 can be written straightforwardly in canonical form—i.e., expression for the conserved momentum.
as Hamilton’s equations for a pair of fields composed from a The simplicity with which the field equations can be de-
linear combination of andf', satisfying canonical commu- rived by the canonical approach described here, together
tation relations—withCY"5F as the Hamiltonian36,13.  with the way we can truly identify quantities connected with
Furthermore, one can compose a canonical Hamiltonian, i.eSymmetries and called “charge”, “momentum”, and “en-
one that is numerically equal to the electromagnetic energyergy” as they are in the rest of physics, seems to us a cogent
by taking a particular linear combination 6f'-E, cy-SE ~ argument for our approach.
andC5-°E[13]. A problem arises, however, when the shock
term is reinstated, sinc€; has a term proportional tf|®. VIIl. SHOCK TERM ENHANCEMENT
Certainly in this case one cannot form a pair of fields from a IN PHOTONIC CRYSTALS
linear combination of and ', introduce canonical commu-
tation relations for those fields, and recover an equation with Concern with the nature and treatment of the shock term
nonlinear terms like those of Eq101) from Hamilton's is not purely academic, for the shock term can be enhanced
equations' So a|thou@3 is a Conserved quantity associated n phOtOHIC Cry.sta.ls over the value it would ta.k.e Ina Un|f9rm
with Eq. (101, it cannot be used as a Hamiltonian with medium, and it—and perhaps even successive terms in the
canonical commutation relations to generate @6.). expansion that generated it—can be comparable in si;e to the
Furthermore, there is no straightforward way for Eq.usual self-phase modulation term in the nonlinear Schro_
(101) to be generated bgny Hamiltonian, and to thus obtain dinger equation. To demonstrate this, we co_nS|der a phot_onlc
a shock term of the formy(|f|2f)/dz from a canonical crystal structure composed of a square lattice of cylindrical

Hamiltonian formulation, in the following sense. Assume we'0ds of infinite length, from which three adjace(it00-
impose canonical commutation relations on a pair of fietds direction rows of rods have been removed, as indicated in the

inset of Fig. 3. This structure is similar to the one depicted in

: ; Fig. 1(b); it differs in that it avoids the complications asso-
write down any integraH composed of sums of products of ciated with cylinders of finite length, but is similar in sup-

f, £, and their spatial derivatives, and writein terms of¢ ; . . . o

— o i — porting guided modes in the defect region. It is in these
and¢, then Hamilton's equations fap and, with Has the 5 jiged modes that we will examine shock term enhance-
Hamiltonian can only yield a shock term of the form we havep,ent This defect paradigm for photonic crystal waveguides
presen_ted in this paper. The relevant commutator, for equa|ss peen the subject of intense fabrication eff¢8&—41
times, Is and has also been studied numerici#ig—47.
#(2) To consider guided modes of the waveguide structure, we

find Bloch modes with wave vectdr=(0,0k), as indicated
Jz in the inset of Fig. 3. The calculations are accomplished by
constructing a supercell in the direction in which the period-

andg, which are linear combinations é&ndf’. If we then

f(z'),f dz( L @212

+
+&F(2)f(2)f1(2) of (Z)) icity is broken by the defect, so we are formally considering

9z a periodic array of adjacent waveguides separated by a su-
(2 percell width. As long as the amplitude of the guided fields is

=2(&,— &)|F(2)]? , low at the edge of the supercell, the results should provide a

az' good approximation to the behavior of the guided fields of a

single line defect waveguide. Since this supercell structure

whereé; and &, are complex numbers. has three-dimensional periodicity, we can describe the

We also note that the quantity, clearly does not corre- guided modes of the structure by using the 3D structure for-
spond to the electromagnetic energy, as can be verified byalism from Sec. IV for frequencies within a band, or not
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FIG. 3. Band structure of a 2D photonic crystal with a line ~ F!G- 4. The nonlinear coefficienty, for k up to the Brillouin
defect waveguide. Three adjacébb0)-direction rows of rods have 20N€ €dge in the direction, for the lowest eight bands.
been removed from a bulk crystal of lattice constartb form the
waveguide. The dielectric function is depicted in the inset, which ~(2)
also indicates the direction &f The region between the horizontal Im k=
dotted lines corresponds to the in-plane photonic band gap of the
bulk crystal, and indicates the location of the guided defect modesFigure 4 shows the coefficient,,, for k up to the Brillouin
t00 far within a band gap4g] zone edge in the djrection for the lowest eight band.s. For

’ this structure, we find that the bulk modes show no interest-

Because the wave vector lies in the plane of the Iatticein features in terms of... . but the quided modes can show
the Bloch modes can be separated by polarization, and wed mk> 9

i . ) . ._both negative slopes and sharp rises.
specifically consider TM modes, i.e., those with electric ' .
i . : The ratio of the shock term to the self-phase modulation
fields polarized parallel to the rods. The calculations are P arm in the dvnamical e uaticis9) is given b
formed using a freely available packap#9] which uses a y q 9 y
polarized plane wave basis to solve the linear Maxwell R=—iR.R
eigenproblem using a conjugate gradient method. In units of P
the lattice constand, the supercell consists of @@l array ~ where we have defined the dimensionless quantities
of cylindrical rods of radius =0.2, with three adjacent rods

N -

(9 P—
(9_kz(a’mk)k-

removed to form the defect. The rods are taken to have an _ . 9 _

index of refraction of 3.4, typical of a semiconductor mate- Re=(aam a_kz(amk)k'

rial at optical or telecommunications wavelengths. The back-

ground is taken to be air. This supercell dielectric function is 99m

shown in the inset of Fig. 3. R,=(9m) ‘a—- (104

In selecting a band labeling scheme, we favor smoothness oz
of the bands ink, at the cost of having to forego global \yherea is the lattice constant. HerR, contains the infor-
numbering by ascending order in frequency. Specifically, Wenation about the photonic crystal, aRg contains the infor-
choose to number the bands in order of ascending frequencyation about the pulse. We note that while the raRp&.,
when smoothly followed to th& point, which is atka/l2m  andR_ have arisen here within a formulation of the NLSE in
=0.5in Fig. 3. Thuswp,/dk is continuous everywhere ki terms of field amplitudes in E¢59), these ratios have nu-
space, and following the discussion after E8f), it is pos-  merical values common to formulations in terms of field am-
sible to have continuity irk of dy. The band structure is pjitudes, power amplitudes, or intensity amplitudes. Now our
plotted in Fig. 3. While most of the bands are bulk modes,yhole expansion of the linear part of the dynamics requires
each of the bands 7, 8, and 9 are guided modes for SOmM@atR <1, and so for the shock term to be as large as the
region of thel'X line in k space. These bands, respectively,self-phase modulation term, in the regime where the kind of
correspond to bound modes with zero, one, and two nodalffective field description we are constructing here is appli-
planes parallel to thgz plane. In what follows, we focus on cgple, we requirdR;>1, so that|R|~1. For many typical
band 8. oints in the band structure, this condition is not met; in fact,

Since the TM mode has a linearly polarized displacemenjye often findR,<1, so that it is reasonable to neglect the
field, the following calculations are independent of the sym-shock term in characterizing the dynamics, at least at the
metry of the third-order nonlinear response. Since we will béyrger considered in this paper. However, at certain points in

interested in comparing the relative size of the shock terine pand structureR, can be enhanced by an order of mag-
and the self-phase modulation term, we will not need definitgjyyde, so thaR,=1 and|R|=<1. While not as large as the

values forl'§™(r), and we scale all our results to the value self.phase modulation term in this case, the shock term could
of the one important response tensor compogit” in the  not be dismissed out of hand, and indeed could make a sig-
dielectric. From the EqY57) for amy and’&f%we have nificant contribution to the dynamics. In this work we only
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FIG. 5. The shock-enhancement fact®y, calculated for the FIG. 6. Fraction of mode energy confined in the defect region.

lowest eight bands of the photonic crystal for wave ve&tar the  As a baseline for comparison, the defect region—which is taken to
zdirection, over the domain corresponding to the boxed area in Fighe the largest rectangular zone that can be inscribed in the cell
4. This corresponds to the domain for which the upper bound modeyithout overlapping any of the cylinders—comprises 40% of the
band 8, is near the upper band edge of the photonic band gap of thait cell, and the nonguided lower supercell modes all have roughly
bulk crystal. Note the significark dependence, and the range of 10% of their energy or less confined to the defect region.
values attained by the guided modes near the upper band edge.

This shock enhancement is significant even where the

concern ourselves with showing an order-of-magnitude enggde is still well confined. In the case &B/(27)=0.36

hancement of the shock term and arguing for the plausibility;y e, anove, 74% of the total mode energy of band 8 is in
of a significant effect; we defer a more detailed analysis t

later work &he defect region, compared with 85% when optimally con-
. : . fined. Beyond this, the dropoff in confined energy is shown
Figure 5 show®. calculated for the lowest eight bands of y P 9y

he oh , 't & ) he d in Fig. 6. As a baseline for comparison, the defect region—
the photonic crystal for wave vectérranging over the do-  hich s taken to be the largest rectangular zone that can be
main correspondlng' to the b.oxed area in Fig. 4. This COM€inscribed in the cell without overlapping any of the
sponds to the domain for which the upper bound mode, bangjinjers_comprises 40% of the unit cell, and each of the
8, Is near the upper band edge of_the phatonic band 98P Qkst of the lowest ten bands have roughly 10% of their en-
the bulk crystal. While the lowest six bands show no signifi-

K R hi h | ergy or less confined to it.
cantk dependence oR, over this range and hawe, less Of course, we have only shown here that in a specific case

than or very close to unity, the guided modes show signifiy,e ghock term can get large enough in a photonic crystal to
cantk-dependence, and take on positive or negative valueg;s of concern when considering nonlinear propagation.

Band 8 shows a significant enhancemenRpfas the mode  \yhether or not such a term will remain significant as time
frequency approaches the upper band edge of the bt,‘lk ClY&Volves, and indeed whether or not the kind of expansion we
tal. For example, wherka/(2m)=0.36, band 8 is still @ paye ysed in this paper will remain adequate as the field

well-confined mode, and yet h&& =5.6, an order of mag- ropagates are more complicated issues that we plan to ad-
nitude larger than that obtained for most of the lower bandsy,ess in a future paper.

Band 4, in comparison, hd&,=0.40 at the same point.

This enhancement of the shock effect can be readily in-
terpreted within the framework of this paper. The facigy,
can be interpreted as the degree to which the Bloch mode The goal of this paper has been to develop an approach to
samples the nonlinearity of the dielectric. As we traversetreat the nonlinear propagation of electromagnetic fields in
band 8 from the center of the bulk gap region towards thephotonic crystals based on the introduction of effective
upper band edge, the mode profile remains relatively confields. While we began wit®(r,t) andB(r,t) as our funda-
stant. However, in crossing the upper band edge and changaental fields, rather than the more uskdt,t) andH(r,t),
ing from a strongly confined mode to an unconfined bulkthis was only to facilitate the simple canonical formulation of
mode of a different profile, the mode undergoes a significanthe electromagnetic field. The fields that become our dy-
change. Although this only corresponds to a small change inamical quantities in this approach are neiti¥r,t) and
the mode energy, it corresponds to a significant change in thB(r,t), norE(r,t) andH(r,t), but rather effective fields that
quartic sampling of the nonlinearity by the Bloch mode. Andwe construct in real space from the canonical amplitudes of
since the change occurs over a relatively small rangk of the different Fourier components of the electromagnetic
vectors near the band edge, the derivative is large, and thiigld. These scalar fields satisfy the canonical commutation
Im b, is large. Furthermore, since the waveguide has an airelations exactly, so even when their dynamics are only de-
core, the guided modes sample little of the dielectricas@  scribed approximately they remain simple quantities with
is low. ThusR; is large. which to work. And, indeed, it is simpler to derive their

IX. CONCLUSION
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approximate dynamics than to derive the approximate dyeus labeling used in those latter sections. That continuous
namics of the slowly varying envelope functions associatedabeling is of two types. In Sec. IV we are interested in a 3D
with the electromagnetic field itself. Because this approach iphotonic crystal, or in a region of the Brillouin zone of a
based on a canonical formulation of the electromagnetitower dimensional photonic structure where the solutions of
field, the Hamiltonian and its symmetries are available forthe linear Maxwell equations are characterized by band indi-
the investigation and identification of conserved quantitiescesm and crystal wave vectots that range continuously in
and the resulting theory is such that quantization can be easil directions about a given point in reciprocal space. In Sec.
ily undertaken. V we focus on lower dimensional structures and a region of
We have used this approach to derive the usual nonlineahe Brillouin zone where, for a given band index or a
Schralinger equation and nonlinear coupled mode equationgiven set of band indices, there is a family of solutions of the
that have formed the basis of much of the discussion of nonlinear Maxwell equations characterized by a one dimensional
linear propagation in one-dimensional structures. Througlerystal wave numbek that varies continuously. We consider
the approach developed here, they can be extended to highitie mode notation for these two cases below. In this appen-
dimensional structures with large variations in the lineardix, and only here, we use tildes to indicate the discrete
properties of the photonic crystal. We have also shown hownode functions and associated amplitudes introduced in Sec.

the approach easily allows for the extension of these usua|| sych as(D,(r),B,(r)) anda,(t) to distinguish between
equations to include higher-order terms, investigating thehese discretely labeled mode functions and the continuously
first “shock” type correction that appears in the nonlinear japeled mode functions we introduce here. While the discus-
Schralinger equation. We have argued that this term arises igjon here is self-contained, rather than repeating equations
our approach in a form that is more convenient than it doegyve will refer back to those that already appear in the text.

in other, more direct approaches based directly on envelope we begin first with the mode structure of interest in Sec.
functions Characterizing one of the Maxwell fields, in that a|V, and consider first the use of Bloch’s theorem to label our
canonical Hamiltonian theory results. And we have arguegnodes by a band indem and a crystal wave vectds that

that this term can indeed be important in nonlinear propagaties within the first Brillouin zone. Our index then is re-

tion in photonic crystals. ~_ placed by the paimk, and we write our modes as
Throughout we have considered only a Kerr nonlinearity,

investigated only third-order nonlinear processes associated ~ £oN°h @ "

with an intensity dependent refractive index, and restricted Drnk(1) =\ =%y Pm(r)e™",

ourselves to wave packets centered at points in the band

structure where there are no degeneracies. And the canonical B o O _

formulation we have employed is restricted to material me- Bk(r)= \/TBmk(r)e""r, (A1)

dia that themselves are approximated as lossless and disper-

sionless. But extensions to more complicated nonIinearitiegNhereﬁ is a reference refractive index. the value of which

to nonlinear parametric processes involving frequency Mix,n pe chosen for convenience: we assume a unit cell volume

ing, and to effective fields associated with points or lines ofV , and a normalization volume df unit cells, with vol-
ce ]

degeneracy can also be considered within this frameworli]meVZNV . We choose the factors in EGA1) so that
. . cell - :
And re(_:ent work that allovv_s a Caf_‘O”'Ca' formulation of qthe periodic part$28) of the Bloch functions are normalized
dispersive and lossy material medu[_ﬁo] can be general- according to Eq(29) for anyk, as follows from Eq.(Al)
ized to treat photonic crystals .and m_cluded in this frame-and Eqs(17) and(18). We do not use tildes on the functions
work. We plan to turn to these issues in future papers. (Doi(1). Buy(1)) because we will keep these functions as we
move to continuous notation, which we now do.
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z [Emk ,é:n,k,] =1,

APPENDIX: DISCRETE AND CONTINUOUS MODE m'k’
NOTATION
T r_
In this Appendix we sketch how the various normalization % J [8mic, 8y 1K =1, (A2)

factors that appear in Secs. IV and V arise in moving from
the discrete labeling of modes used in Sec. Ill to the continurespectively, and using
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tildes on the functiond Dy, (r),Bn(r)) because we will

keep these functions as we move to continuous notation.
Here our task is to move from discrete mode amplitudes

as we move from discrete to continuous labeling of waveSatisfying

vectors, Eq(A2) imply that
8

V amk " (A4)

Amk—

~ =T
[amkvamrkr] = Omm ki’ »

to continuously labeled mode amplitudes satisfying

[Amiar 1= Sy S(k—K').

The same approach, as we move from the normalization con-

ditions (17) and (18) to Eq. (26) leads to

~ 873
Dmk(r)H TDmk(r)y
~ 843
Bmk(r)_> TBmk(r)a

and hence to Eq(27). Using the relationgA4) and (A5)
together with the summation-to-integration form H#3)
we recover Eq(24) from Eq. (20) and Eq.(30) from Eq.
(22.

(A5)

We now turn to the mode structure of interest in Sec. V,

The procedure follows that above; from

> [Endr o 1=1,

m'k’
D f[amk,a;,k,]dk’:l, (A7)
m/
and now
dk’
% —L| 5= (A8)

where we only have periodicity in one direction, which we & We move from discrete to continuous labeling of wave

take asz. Our general indexx then now replaced by the pair

mk, and we write our modes as

-

~ Son hw K .
Bk =\ =5 4 D 1)E,
~ Moﬁw Kk .
Brud1) =\ 5 A" B 1)e™

Here we assume a periodicity b, in thez direction and a
normalization length of N unit cells, with length L
=NLce - Now integrals in Eqs(17) and(18) range ovelL
in the z direction but over alk andy; nonetheless, we intro-

(AB)

vectors, Eq(A7) imply that

_ 2m
Amk— Tamk-

(A9)

The same approach, as we move from the normalization con-

ditions (17) and (18) to Eq. (50) leads to

~ (27T
Dmk(r)_> TDmk(r)y
~ (277
Bmk(r)_> TBmk(r)y

(A10)

duce a nominal areA in the xy plane that we use for con- and hence to Eq51). Following the approach used in the
venience in our normalization constants. The factors in Eqthree-dimensional case above, using the relati@® and

(AB) are such that the periodic pa&2) of the Bloch func-
tions are normalized according to E&3) for anyk, follow-
ing from Egs.(A6), (17), and (18). Again we do not use

(A10) together with the summation-to-integration fof#g)
we recover Eq(48) from Eq. (20) and Eq.(54) from Eq.
(22).
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