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Effective field theory for the nonlinear optical properties of photonic crystals
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We introduce an effective field theory for the nonlinear optics of photonic crystals of arbitrary dimension-
ality. Based on a canonical Hamiltonian formulation of Maxwell’s equations, canonical effective fields are
introduced to describe the electromagnetic field. Conserved quantities are easily constructed and their physical
significance identified; the formalism can be easily quantized. We illustrate the approach by considering a
periodic Kerr medium, and show how the nonlinear coupled mode and nonlinear Schro¨dinger equations
emerge. We extend the latter to treat optical shock effects, and compare our canonical formulation with earlier
treatments.
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I. INTRODUCTION

Current computing capabilities allow for the direct sim
lation of propagation problems in optics at a level that wo
have been unthinkable only a few years ago. In particu
calculations of nonlinear optical propagation in photon
crystals and other artificially structured materials by the
rect numerical solution of Maxwell’s equations are now fe
sible. And so it becomes even more important now to s
out characterizations of such numerical solutions that al
for their general understanding, and especially for the id
tification of material and geometric parameters that de
mine their qualitative nature. This is often done by exam
ing the solutions of approximate equations that describe
electromagnetic field.

The usual approach for uniform media, and materials w
weak variations in their linear optical properties, is to co
struct approximate equations for slowly varying envelo
functions that modulate plane waves at a carrier freque
and wave vector@1,2#. In these simple structures, the nonli
ear Schro¨dinger equation~NLSE! has been shown to provid
a good description of nonlinear propagation away from
band gap, or within a band gap but at frequencies clos
one of the band edges@3#, and the nonlinear coupled mod
equations ~NLCME! serve as a basis for understandi
propagation near and even deep within a band gap@4,5#.

In other artificially structured materials, such as high
dimensional photonic crystals, there are typically large va
tions in the linear optical properties of the structure ov
distances of the order of a wavelength of light. The us
heuristic derivations that lead to the NLSE and NLCM
equations here become suspect. Indeed, the approxim
that the electromagnetic field can be described by one
small set of slowly modulated plane waves is clearly phy
cal nonsense. Yet an approach not unlike the heuristic on
possible. The strategy for a photonic crystal is to use slo
varying envelope functions to modulate Bloch waves—i
exact solutions of the linear problem—rather than pla
waves, and then seek equations for those envelope funct
In the appropriate frequency regimes nonlinear Schro¨dinger
equations and nonlinear coupled mode equations@6# result,
with a form similar to those heuristically derived in the lim
1063-651X/2004/69~1!/016604~20!/$22.50 69 0166
r,

-
-
k

w
-

r-
-
e

h
-
e
y

a
to

r
-
r
l

ion
a

i-
is

ly
.,
e
ns.

of weak variations in the linear optical properties, but w
the coefficients ‘‘renormalized’’ to capture how the Bloc
wave samples the underlying gain, loss, or nonlinearity.
effective one-dimensional~1D! structures this approach goe
back some years@6#; recently@7# it has been generalized t
higher dimensional photonic crystals.

These treatments have generally been restricted to dea
with Kerr nonlinearities, and considering only the lowes
order dispersion and diffraction effects. While one can ea
envisage extending this approach to consider more gen
nonlinear and propagation effects, the tedious nature of
derivation is enough to put off even the most enthusia
practitioner. There are three reasons for this.

First and probably the foremost is the way in which co
ficients that characterize the group velocity, group veloc
dispersion, and the like, enter in the formalism. In the cou
of the derivation, slowly varying envelope functions are i
troduced for all Bloch waves at a given crystal wave vect
One or more of these are assumed large in magnitude; t
are sometimes called ‘‘principal’’ terms. The others are
smaller magnitude, which are called ‘‘companion’’ term
and in the multiple scales analysis are slaved to the princ
terms. The dispersion relation coefficients arise through
connection between the principal and companion terms,
a k•p analysis must be done essentially in parallel with t
derivation to identify the correct coefficients. Thus a fair
tortuous derivation is required to produce dispersion coe
cients in the final equations that are completely expected
simple physical grounds.

Second, because the usual multiple scales approaches
ceed by using the assumed form for the electromagnetic fi
directly in the Maxwell equations, rather than from a L
grangian or Hamiltonian basis, the conservation laws of
derived dynamical equations, and their connection with
derlying symmetries of the problem, are not easy to ident
Indeed, in the case of the nonlinear coupled mode equat
there has been confusion and dispute for a number of y
over the physical meaning of one of the conserved quant
@8–10#.

Third, for full three-dimensional problems any assum
tion involving envelope functions must respect, at least to
appropriate level of approximation, the fact that the magne
©2004 The American Physical Society04-1
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field and the electric displacement are divergenceless
practice this can be addressed by writing the magnetic fi
in terms of a vector potential and the displacement in te
of a dual potential, and applying the analysis at the leve
the potentials@7#. But again more formal complexity is in
troduced.

In this paper we introduce a different approach that avo
these difficulties. The idea here is to work not with slow
varying amplitudes that modulate Bloch functions, but rat
with effective fieldsthat are introduced within the context o
a canonical formulation of the electromagnetic field in t
presence of the photonic structure. To relate these effec
fields to the physical electromagnetic fields requires ak•p
analysis, but nok•p analysis is needed in deriving the line
dynamics of the effective fields, and to the extent tha
enters in the nonlinear dynamics it does so in a very ben
way.

So in a sense the dynamics is simplified at the cos
complicating the kinematics. Yet, since the relation betwe
the effective and physical fields can be done once and for
that cost is very small. The derivation of the dynamical eq
tions proceeds again using multiple scales, but is much ea
than in earlier approaches, especially since a divergence
magnetic field and electric displacement are built into
canonical formulation itself. We will not concentrate here
the formulation of the conditions that would be necessary
make the multiple scales analysis rigorous; that is, we w
not display all the length and time scale ratios that must
established as initial conditions and thereafter maintained
the solution of the dynamical equations themselves. T
would be done in a way that is now familiar in the literatu
@6,11,7,12#, and indeed in that respect our approach paral
earlier work. Instead we focus on how the difficulties
earlier approaches are avoided. We show how the w
known nonlinear Schro¨dinger and nonlinear coupled mod
equations arise in this approach, assuming a simple K
nonlinearity; we leave the extensions to treat new nonlin
propagation effects to future communications.

The starting point is a canonical formulation of Maxwel
equations in the presence of dielectrics, which we assu
here are nondispersive and without gain or loss. In ear
communications we used a dual potential to affect this,
on the basis of that we could provide derivations of t
NLSE @13# and NLCME@14# equations using such effectiv
fields in the restricted case of one dimension. While t
work could be generalized to higher dimensions, we inst
use a different canonical formulation of the Maxwell equ
tions that we give in Secs. II and III below. This is an a
proach free of the introduction of any potential fields at a
and is therefore simpler than the dual potential approach
others. On the basis of this we introduce our effective fie
in Sec. IV, and show how they can be used to derive
NLSE. In Sec. V we turn to the NLCME.

Since our treatment is based on a canonical formulatio
the electromagnetic fields, we can easily explore the phys
symmetries associated with conserved quantities of the e
tive fields. This cannot be done in any straightforward w
with conserved quantities of the more traditional slow
varying envelope functions. We illustrate this in Sec. V
01660
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Finally, although our main goal here is to present this a
proach rather than consider particular applications, in S
VII we consider the physics of an additional shock term th
can accompany the usual self-phase modulation and g
velocity dispersion in the NLSE. This illustrates both ho
easy the identification of this term is within this approac
and as well how the physics enters differently and more c
veniently here than in other, more traditional treatments.
illustrate the use of the equations we derive here with so
examples in Sec. VIII; concluding remarks are presented
Sec. IX, and we relegate some of the mathematical detai
the Appendix.

Although we will be exclusively concerned with classic
fields in this paper, instead of using Poisson brackets
formally employ commutators, moving back and forth free
between the classical and quantum formalism and notat
Similarly we use † interchangeably with * to denote com
plex conjugation. We do this to point the way towards t
generalization of this approach into the quantum doma
The easy ability to do this is yet another advantage of t
approach over the more traditional methods. Yet in this pa
one can always take

1

i\
@ . . . , . . .#→$ . . . , . . .%

to arrive at the actual classical equations intended; at
classical level adopted here the order of field quantities in
various products that appear is irrelevant.

II. CANONICAL FORMULATION OF MAXWELL’S
EQUATIONS

The canonical formulation of Maxwell’s equations in th
absence of free charges, but in the presence of diele
media, linear and nonlinear, is an old subject in the op
literature that we will not attempt to review here. In man
treatments complications arise because one chooses a
to a canonical formulation that begins with a Lagrangian. Y
that is not required. Even in the canonical formulation o
classical system for ultimate use in quantization, one is o
required to provide a set of commutators~or Poisson brack-
ets! and a Hamiltonian such that their use leads in the us
way to the desired dynamical equations, and such that
numerical value of the Hamiltonian in the classical theory
equal to the energy. It turns out this is surprisingly easy to
for our problem, as we illustrate below.

As our dynamical equations we take the two curl equ
tions of Maxwell,

]D

]t
5“3H,

]B

]t
52“3E, ~1!

treating the divergence equations

“•D50, “•B50, ~2!

as initial conditions. If these are satisfied at some time,
the fields evolve according to Eq.~1!, then they will be sat-
isfied at all later times. Formally one can restrict oneself
4-2
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EFFECTIVE FIELD THEORY FOR THE NONLINEAR . . . PHYSICAL REVIEW E69, 016604 ~2004!
the start to the class of fieldsD(r ,t) andB(r ,t) that satisfy
Eq. ~2!; in practice, this is most easily done by introducin
modes that satisfy Eq.~2!, as we do in the following section
Within this framework this suggests thatD(r ,t) and B(r ,t)
should be thought of as the fundamental fields, andE(r ,t)
andH(r ,t) as derived fields.

To be able to integrate Eqs.~1! we need constitutive rela
tions that relateH and E to D and B. Neglecting magnetic
effects we have

B~r ,t !5m0H~r ,t !,

D~r ,t !5«0E~r ,t !1P~r ,t !, ~3!

where in vacuumP(r ,t)50, and in a dielectric it must be
specified in terms of other fields so that Eq.~1! can be inte-
grated. HistoricallyP is given in terms ofE, but we want to
understandP as a function ofD:

Pi~r ,t !5G1
i j ~r !D j~r ,t !1G2

i jm~r !D j~r ,t !Dm~r ,t !

1G3
i jmn~r !D j~r ,t !Dm~r ,t !Dn~r ,t !1•••, ~4!

where we assume that a perturbation approach to the no
ear optical response will suffice. Here superscripts indic
Cartesian components that are to be summed over if
peated. By allowing theG’s to depend on position we allow
for an inhomogeneous dielectric, but the response is take
be local in both space and time. From the point of view of
underlying microscopic theory, this implies that any freque
cies of interest are well below any resonant frequencies
the medium@15#. In this limit the G’s are invariant under a
permutation of their Cartesian components@16#; this we as-
sume as well.

Standard arguments in electromagnetic theory lead to
expression for the energy density@17#,

h5E H•dB1E E•dD. ~5!

Note that when Eqs.~4! and ~3! are used in this expressio
we require the permutation symmetry of theG’s so that the
integration implied in Eq.~5! is independent of integration
path, is thus well defined, and can be done. The result for
total energy of the electromagnetic field in the presence
the dielectrics is

H5
1

2m0
E drBi~r !Bi~r !1

1

2«0
E drDi~r !Di~r !

2
1

2«0
E drDi~r !1

i j ~r !D j~r !

2
1

3«0
E drDi~r !G2

i jm~r !D j~r !Dm~r !

2
1

4«0
E drDi~r !G3

i jmn~r !D j~r !Dm~r !Dn~r !1•••.

~6!
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To construct a canonical formulation of the electromagne
field we now simply require a set of Poisson bracket re
tions ~or alternately commutators! that yield the dynamical
equations~1! as a consequence of Hamilton’s equations
ing the total energyH as the Hamiltonian. The appropriat
equal time commutation relations are

@Di~r !,D j~r 8!#5@Bi~r !,Bj~r 8!#50,

@Di~r !,Bj~r 8!#5 i\« i l j
]

]r l
@d~r2r 8!#, ~7!

where « i l j is the Levi-Civita symbol@18#. Taking these as
our fundamental commutation relations, it follows immed
ately that we recover Eq.~1! using Hamilton’s equations

i\
]D

]t
5@D,H#,

i\
]B

]t
5@B,H#, ~8!

with Eq. ~6! as the Hamiltonian.

III. MODE EXPANSION

In the limit of weak nonlinearities it is useful to build o
the solutions of Maxwell’s equations that obtain in the a
sence of nonlinearity. To do so, we consider a linear isotro
medium for which we would normally write

P~r ,t !5«0x~r !E~r ,t !5
x~r !

11x~r !
D~r ,t !,

so that

G1
i j ~r !5d i j

n2~r !21

n2~r !
,

where we have introduced the local refractive indexn(r ) as
the positive square root of@11x~r !#. The approach outlined
here can be easily generalized to linear media with m
complicated constitutive relations. We can then write our f
Hamiltonian as

H5H02
1

3«0
E drDi~r !G2

i jm~r !D j~r !Dm~r !2
1

4«0

3E drDi~r !G3
i jmn~r !D j~r !Dm~r !Dn~r !1•••, ~9!

with

H05
1

2m0
E drBi~r !Bi~r !1

1

2«0
E dr

Di~r !Di~r !

n2~r !
. ~10!
4-3
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The linear modes we seek are solutions of the dynam
equations where onlyH0 is used as the Hamiltonian. Usin
this in Eq. ~8! we generate the usual linear Maxwell equ
tions

]D~r ,t !

]t
5

1

m0
“3B~r ,t !,

]B~r ,t !

]t
52

1

«0
“3FD~r ,t !

n2~r !
G , ~11!

and look for stationary solutions of these equations,

D~r ,t !5Da~r !e2 ivat1c.c.,

B~r ,t !5Ba~r !e2 ivat1c.c., ~12!

where c.c. stands for complex conjugate, for which Eq.~11!
require

2 ivam0Da~r !5“3Ba~r !,

iva«0Ba(r …5“3FDa~r !

n2~r !
G . ~13!

From these we find the so-called ‘‘master equation’’ th
Ba(r ) must satisfy,

“3F¹3Ba~r ,t !

n2~r !
G5

va
2

c2
Ba~r !. ~14!

For vaÞ0, solution of this equation subject to the dive
gence condition

“•Ba~r !50, ~15!

together with theDa(r ) that can be found from Eq.~13!,
leads to a pair of fields„Da(r ),Ba(r )… that identify a station-
ary solution of the linear Maxwell equations~1!, and that
also satisfy the divergence conditions~2!. We associate a
positive va with each of these solutions, which we call
mode. Using the complex conjugate of Eqs.~13!, we find that
for every mode„Da(r ),Ba(r )… there is another mode

„Da8~r !,Ba8~r !…5„Da* ~r !,2Ba* ~r !…, ~16!

with the same frequencyva85va .
Since the operator on the left-hand side of Eq.~14! is

Hermitian, the solutionsBa(r ) associated with differentva
are orthogonal, and we normalize them according to

E dr
Ba* ~r !•Bb~r !

m0
5

\va

2
dab , ~17!

wheredab indicates a Kronecker delta. For an infinite syste
such as an idealized photonic crystal, we temporarily ass
‘‘box’’ normalization by taking the integration in such equ
tions to range over a normalization volume. For degene
modes we use the usual Gram-Schmidt orthogonaliza
01660
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procedure to guarantee orthogonal modes. From Eq.~13! we
then find that theDa(r ) are orthonormal according to

E dr
Da* ~r !•Db~r !

«0n2~r !
5

\va

2
dab . ~18!

In terms of these stationary solutions we can write ar
trary D andB fields as

D~r ,t !5(
a

C a
(1)~ t !Da~r !,

B~r ,t !5(
a

C a
(2)~ t !Ba~r !, ~19!

where to guarantee the reality~Hermiticity! of B(r ,t), and
D(r ,t) we requireC a8

(1)
5(C a

(1))† and C a8
(2)

52(C a
(2))†. This

can be satisfied by introducing new mode amplitudesaa with
no restrictions, but such thatC a

(1)5aa1aa8
† and C a

(2)5aa

2aa8
† . We then have

D~r ,t !5(
a

@aa~ t !Da~r !1aa
†~ t !Da* ~r !#,

B~r ,t !5(
a

@aa~ t !Ba~r !1aa
†~ t !Ba* ~r !#. ~20!

Using Eq.~20! in the equal time commutation relations fo
D„r ,t) and B„r ,t), Eq. ~7!, we find equal time canonica
commutation relations for theaa(t):

@aa ,ab#50,

@aa ,ab
† #5dab . ~21!

Substituting the expression~20! into the expression~10! for
H0 we find

H05(
a

\vaaa
†aa . ~22!

The other portions of the full Hamiltonian can be found
substituting the expressions~20! for B(r ,t) and D(r ,t) into
Eq. ~9!. Using the Hamiltonian~9! expressed in terms of th
mode amplitudes via Eq.~20!, the commutation relations
~21!, and the Heisenberg equations of motion,

i\
daa~ t !

dt
5@aa~ t !,H#, ~23!

we recover Maxwell’s equations~1!.
We now specialize to a three-dimensional photonic cr

tal, wherein the index of refraction is periodically varyin
such thatn(r1R)5n(r ) for any lattice vectorR. The index
a then consists of a crystal wave vectork and a band index
m. Passing to the limit of an infinite crystal, the crystal wa
4-4
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EFFECTIVE FIELD THEORY FOR THE NONLINEAR . . . PHYSICAL REVIEW E69, 016604 ~2004!
vectork varies continuously through the first Brillouin zon
and, as we show in the Appendix, our field expansions~20!
are replaced by

D~r ,t !5(
m

E dk@amk~ t !Dmk~r !1amk
† ~ t !Dmk* ~r !#,

B~r ,t !5(
m

E dk@amk~ t !Bmk~r !1amk
† ~ t !Bmk* ~r !#,

~24!

our commutation relations~21! are replaced by

@amk ,am8k8#50,

@amk ,am8k8
†

#5dmm8d~k2k8!, ~25!

with mode functions„Dmk(r ),Bmk(r )… normalized according
to

E dr
Dmk* ~r !•Dm8k8~r !

«0n2~r !
5

\vmk

2
dmm8d~k2k8!,

E dr
Bmk* ~r !•Bm8k8~r !

m0
5

\vmk

2
dmm8d~k2k8!, ~26!

where the integrals range over all space. We have u
Bloch’s theorem to write

Dmk~r !5A«0n̄2\vmk

16p3
Dmk~r !eik•r[

dmk~r !eik•r

A8p3
,

Bmk~r !5Am0\vmk

16p3
Bmk~r !eik•r[

bmk~r !eik•r

A8p3
, ~27!

wheren̄ is a reference refractive index that can be chosen
convenient, and where theDmk(r ) andBmk(r ) ~see the Ap-
pendix! have the periodicity of the lattice,

Dmk~r !5Dmk~r1R!,

Bmk~r !5Bmk~r1R!, ~28!

for any lattice vectorR; the dmk(r ) and bmk(r ) share this
property. The constants preceding the periodic functions
Eq. ~27! are set so that the periodic functions are normaliz
according to

E
cell

dr

Vcell
Bmk* ~r !•B m8k~r !5dmm8 ,

E
cell

dr

Vcell

n̄2

n2~r !
Dmk* ~r !•D m8k~r !5dmm8 , ~29!

for eachk, where we denote the volume of one unit cell
the medium byVcell . The part of the Hamiltonian describin
linear dynamics~10! takes the form
01660
ed
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H05(
m

E dk\vmkamk
† amk . ~30!

Although more general nonlinearities could easily be
cluded, we will here consider only a Kerr nonlinearity wi
the periodicity of the lattice,

G3
i jmn~r !5G3

i jmn~r1R!.

Then the nonlinear part of the Hamiltonian becomes

HNL52
1

4«0
E drDi~r !G3

i jmn~r !D j~r !Dm~r !Dn~r !,

~31!

and the full Hamiltonian is

H5H01HNL . ~32!

In the following section we use Eq.~32! defined in terms of
Eqs.~30! and ~31! as our Hamiltonian, which we subject t
various approximations to describe pulse propagation.

IV. EFFECTIVE FIELDS AND THE NONLINEAR
SCHRÖDINGER EQUATION

In this section we use the Hamiltonian formulation
Maxwell’s equations in a periodic medium to generate pu
propagation equations in the presence of a Kerr nonlinea
We will stop our derivation at the level of the nonline
Schrödinger equation, modified to include a shock term. B
equations with higher-order nonlinear, dispersive, and mi
terms could also be derived using the same approach.
focus here is not the derivation of a new equation relevan
a particular physical situation, but rather to demonstrate
the approach we advocate here makes identification of s
equations much easier than has been possible in the pa

To do that it is useful to identify the traditional approac
@3,7# in our present notation. One begins with the gene
expressions~24! for the fields and the mode coefficients~27!
to write

D~r ,t !5(
m

E dkamk~ t !Dmk~r !1c.c.

5(
m

E dk

A8p3
amk~ t !dmk~r !eik•r1c.c.

5(
m

f m~r ,t !dmk̄~r !ei ( k̄•r2vmk̄t)1c.c., ~33!

introducing a set of amplitudesf m(r ,t) associated with each
band at a chosen carrier wave vectork̄. The idea is that the
effects of the underlying spatial variation in the linear optic
properties are contained within thedmk̄(r ). By ‘‘renormaliz-
ing’’ the plane wave used in the uniform medium with th
factor, one can hope to identify amplitudesf m(r ,t) that are
indeed slowly varying@19#, and this is indeed possibl
@20,6,7#.
4-5
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If one is interested in propagation far from a band gap
near or in a band gap but close to the band edge, then on
the amplitudesf m(r ,t) dominates in a multiple scale analy
sis. It is sometimes called the ‘‘principal component,’’ a
the other amplitudes, or ‘‘companion components,’’ a
slaved to it. Keeping lowest-order terms in diffraction, gro
velocity dispersion, and the nonlinearity, a nonlinear Sch¨-
dinger equation for the principal componentf m(r ,t) results.
We refer to the above-cited works to illustrate how comp
cated these kinds of derivations of such a simple result
be.

The strategy we adopt here is to avoid working direc
with fields such asD(r ,t) or E(r ,t), as is done in the ex
pression~33!, but to work rather witheffective fields gm(r ,t)
@21#,

gm~r ,t ![E dk

A8p3
am( k̄1k)~ t !ei k•r. ~34!

Here we have again picked a reference crystal wavevectok̄,
and although the integral in Eq.~34! in principle ranges over
the whole Brillouin zone, a smallness parameter in our
proach will be the range overk over which contributions
from am( k̄1k)(t) are significant; we will assume that th
gm(r ,t) of interest are slowly varying in space over distanc
on the order of the lattice spacing. These effective fields
‘‘canonical’’ in that they satisfy simple equal time commut
tion relations,

@gm~r ,t !,gm8~r 8,t !#50,

@gm~r ,t !,gm8
†

~r 8,t !#5dmm8d~r2r 8!, ~35!

which follow directly from the commutation relations~25!.
However, their relation to the fundamental fieldsD(r ,t) and
B(r ,t) is more complicated. Again turning to the expressio
for the fields ~24! and the mode coefficients~27! we can
write

D~r ,t !5(
m

E dk

A8p3
amk~ t !dmk~r !eik•r1c.c.

5ei k̄•r(
m

E dk

A8p3
dm( k̄1k)~r !am( k̄1k)~ t !ei k•r1c.c.

5ei k̄•r(
m

S dmk̄~r !gm~r ,t !1gmk̄
( j )

~r !
]gm~r ,t !

]r j
1••• D

1c.c., ~36!

where to obtain the third line we have expandeddm( k̄1k)(r )
aboutk50 and performed a partial integration, and we ha
put

gmk̄
( j )

~r ![2 i S ]

]kj
dmk~r ! D

k̄

. ~37!

While this is formally straightforward, care is required in th
very definition of the derivative of that quantity with respe
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to k. After all, if one goes to a numerical code to determi
the dmk(r ) one finds that the code will in general retu
functionsdmk(r ) that have a random variation in their pha
from point to point in the Brillouin zone, even if those poin
are arbitrarily close. Of course aD(r ,t) that is slowly vary-
ing in space can still result from Eq.~24!; this just requires
that there be a rapid phase variation ofamk(t) from k point
to k point that ‘‘undoes’’ that ofdmk(r ).

This raises an important point. Functionsgm(r ,t) that are
slowly varying in space—which clearly requires not only
small range ofuku for significantly contributingam( k̄1k)(t),
but also a smooth variation in their phases—correspond
fields D(r ,t) that are slowly varying in space only if th
phases of thedmk(r ) are slowly varying as one move
through the Brillouin zone. We will want the slow variatio
of the gm(r ,t) to be associated with, and to guarantee,
slow variation ofD(r ,t), and so we requiredmk(r ) that are
smooth functions ofk as we move aboutk5k̄. To ensure
this, we assume that thedmk(r ) are constructed from thei
values atk̄ by a k•p expansion. To do this in a way that th
dmk(r ) are analytic functions ofk throughout theentireBril-
louin zone is not trivial@22#. But since we assume tha
uam( k̄1k)(t)u are significant only for smalluku we can use
standardk•p theory, modified from its version in electro
physics to take into account the differences that arise
photons@23–26#. We will turn to the details of this in a
future publication, where we will also consider the nature
such an expansion about a point or line of degeneracy.

So in older approaches the relation~33! of the slowly
varying fields f m(r ,t) to the physical fields of interest wa
straightforward; in this approach the relation of the effect
fields gm(r ,t) to the physical fields of interest it is mor
complicated. For applications to finite media, equations s
as Eq.~36! would actually have to be implemented to co
nect fields across interfaces, since it is the Maxwellsaltus
~boundary! conditions on those physical fields that must
satisfied. But by accepting more complicated relationsh
between the physical and effective fields, wherek•p theory
must be used, we drastically simplify the derivation of t
dynamical equations for the effective fields. In the line
regime we can completely avoid usingk•p theory, and when
it does appear in the nonlinear regime it is in a more ben
way than in earlier approaches.

To see this, look first at the linear problem. We employ
expansion of the dispersion relation for each band,

vmk5vmk̄1~ki2 k̄i !vmk̄
( i )

1 1
2 ~ki2 k̄i !~kj2 k̄ j !vmk̄

( i j )
1•••,

~38!

where the expansion coefficients in the dispersion relatio
k̄ appear, with

vmk̄
( i )

5S ]vmk

]ki D
k̄

,

vmk̄
( i j )

5S ]2vmk

]ki]kj D
k̄

, ~39!
4-6
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where for simplicity we assume that our bands are non
generate atk̄, and we let the number of superscripts sign
which derivative is indicated. Using this in our linear Ham
tonian ~30!, and partially integrating the resulting terms, w
find

H05\(
m

vmk̄E dr ugmu21
i\

2 (
m

vmk̄
( i ) E dr S ]gm

†

]r i
gm2c.c.D

2
\

4 (
m

vmk̄
( i j )E dr S ]gm

†

]r j

]gm

]r i
1c.c.D 1•••. ~40!

The linear dynamics for thegm(r ,t) then follow from

i\
]gm

]t
5@gm ,H0#,

which is simple to work out because thegm(r ,t) satisfy the
simple commutation relations~35!. We find

]gm

]t
52 ivmk̄gm2vmk̄

( i ) ]gm

]r i
1

i

2
vmk̄

( i j ) ]2gm

]r i]r j
1•••,

~41!

that is, in the linear regime thegm(r ,t) evolve completely
independently. This isnot true for thef m(r ,t), since compar-
ing the expressions forD(r ,t) in terms of thef m(r ,t), Eq.
~33!, and thegm(r ,t), Eq. ~36!, we see that only approxi
mately do we have

f m~r ,t !'gm~r ,t !eivmk̄t; ~42!

to higher order there are contributions from the oth
gm8(r ,t), since when thegmk̄

( j ) (r ) are expanded in terms o
thedm8k̄(r ) there will be many nonvanishing terms. We ca
of course, write thevmk̄

( i ) and thevmk̄
( i j ) in terms of integrals of

the mode fields; usingk•p theory, for example, we can writ
vmk̄

( i )
5vmm

i (k), where the velocity vectorvmm(k… for bandm
at an arbitraryk is

vmm(k)5
c

n̄
E

cell

dr

Vcell
Re@Emk* ~r !3Hmk~r !#, ~43!

where for notational convenience we have introduced dim
sionless fields periodic over the unit cell that we assoc
with the electric field and magnetic displacement,

Emk~r ![
n̄2

n2~r !
Dmk~r !,

Hmk~r ![Bmk~r !. ~44!

Equations such as Eq.~43! are of course exact, and are u
related to approximations associated with a derivation
equations for effective fields. Whereas in older derivatio
@6,7# they had to be used in the course of such derivatio
here they do not arise at all.
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Having so easily disposed of the linear terms, we n
move to the inclusion of the nonlinear effects. Here we m
use our expression~36! for D(r ,t) in Eq. ~31! for HNL . We
consider the standard example of a frequency spectrum
that at thek̄ of interest only one amplitudegm(r ,t) is sig-
nificant, and we assume that we are sufficiently far from a
phase-matching resonances to neglect third-harmonic
eration into another band, although that could easily be
cluded. Without pausing to make the multiple scales analy
rigorous, we will be interested in nonlinearities only suf
ciently strong in their effects to be comparable to thevmk̄

( i j )

term above Eq.~41!, or at most, if that term is anomalousl
small, to thevmk̄

( i ) . Thus the fastest time behavior ofgm(r ,t)
will be exp(2ivmk̄t), and the leading terms inHNL with
respect to the dynamics ofgm(r ,t) will be those that involve
two terms from the set„gm(r ,t),]gm(r ,t)/]r j… and two from
the set„gm

† (r ,t),]gm
† (r ,t)/]r j…. The kind of approximation

where one keeps only these leading terms is someti
called a ‘‘rotating wave approximation.’’ The other term
could also easily be kept, although it is easy to confirm t
for k̄ at an arbitrary point in the Brillouin zone they will no
in general survive the spacial integration in the express
~31! for HNL; however, if they do survive their effects coul
easily be included by standard multiple scales technique

We keep only the leading terms and, since t
]gm(r ,t)/]r j terms in the expression~36! for D(r ,t) are as-
sumed to be much smaller than thegm(r ,t) terms, we keep
only contributions toHNL involving one derivative term. Fi-
nally, we simplify those contributions following an approac
used earlier in one-dimensional studies@13,14#. We note that
the periodic functionsdm8k̄(r ), gmk̄

( j ) (r ), andG3
i jnl (r ) can be

expanded in terms of reciprocal lattice vectors. Thus th
products that appear inHNL can as well. And since by as
sumption the range ofuku appearing ingm(r ,t) is small, only
the contribution from the zero reciprocal lattice vector of t
product of periodic functions will survive. Employing a
these considerations, we find

HNL52
\

2
amk̄E dr ugmu42

\

2 Sãmk̄
(p)E drgm

† ugmu2
]gm

]r p
1c.c.D ,

~45!

where

amk̄5
3

\«0
E

cell

dr

Vcell
G3

i jnl ~r !

3@dmk̄
i

~r !#* @dmk̄
j

~r !#* dmk̄
n

~r !dmk̄
l

~r !,

ãmk̄
(p)

5
6

\«0
E

cell

dr

Vcell
G3

i jnl ~r !

3@dmk̄
i

~r !#* @dmk̄
j

~r !#* dmk̄
n

~r !gmk̄
l (p)

~r !.

Then, since we are keeping only one band in our calculat
with the inclusion of linear terms up to and including tho
involving vmk̄

( i j ) , our total Hamiltonian becomes
4-7



tio
ro
th
in
ls

tio
,

ci
ci
ve
m
tu
ry

in
pl
s

-
,

i-

or

os-
r
ator
is a
eso-

ho-
of
er
his

SIPEet al. PHYSICAL REVIEW E 69, 016604 ~2004!
HNLSE5\vmk̄E dr ugmu21
i\

2
vmk̄

( i ) E dr S ]gm
†

]r i
gm2c.c.D

2
\

4
vmk̄

( i j )E dr S ]gm
†

]r j

]gm

]r i
1c.c.D 2

\

2
amk̄

3E dr ugmu42
\

2 S ãmk̄
(p)E drgm†ugmu2

]gm

]r p
1c.c.D .

~46!

Using this in our equations of motion,

i\
]gm

]t
5@gm ,HNLSE#,

the application of the commutation relations~35! for gm and
gm

† leads to

]gm

]t
52 ivmk̄gm2vmk̄

( i ) ]gm

]r i
1

i

2
vmk̄

( i j ) ]2gm

]r i]r j

1 i ugmu2S amk̄12i Im~ ãmk̄
(p)

!
]

]r pD gm . ~47!

The first three terms on the right-hand side of this equa
are linear, and describe the linear phase accumulation, g
velocity, and group velocity dispersion experienced by
field. The first nonlinear term describes the familiar nonl
ear self-phase modulation wherein the intensity of the pu
causes an effective correction in its own phase accumula
The second nonlinear term is often called a ‘‘shock term
and describes the nonlinear correction to the group velo
of an intense pulse. This intensity-dependent group velo
can lead to the formation of a shock front in the pulse en
lope function. The form of this shock term is different fro
the usual shock term encountered in the literature; we re
to this issue in Sec. VII. Note that it is only the imagina
part of ãmk̄

(p) that appears in Eq.~47!; in fact, using a partial
integration Eq.~46! can be rewritten to involve only the
imaginary part ofãmk̄

(p) as well.

V. EFFECTIVE FIELDS: 1D STRUCTURES AND THE
COUPLED MODE EQUATIONS

We now examine the situation where the medium of
terest possesses periodicity in only one direction. Exam
of such a system are fiber Bragg gratings, dielectric stack
coupled microresonator structures@Fig. 1~a!#, all of which
possess periodicity only in thez direction. Also, the system
shown in Fig. 1~b!, which consists of a two-dimensional pho
tonic crystal slab into which a line defect has been formed
only truly periodic in thez direction. We label the period in
thez direction byLcell . The modes of interest are now ind
cated by a band indexm and a continuousk that ranges over
the first 1D Brillouin zone. We show in the Appendix that f
this geometry the field expansions~20! are replaced by
01660
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D~r ,t !5(
m

E dk@amk~ t !Dmk~r !1amk
† ~ t !Dmk* ~r !#,

B~r ,t !5(
m

E dk@amk~ t !Bmk~r !1amk
† ~ t !Bmk* ~r !#, ~48!

our commutation relations~21! are replaced by

@amk ,am8k8#50,

FIG. 1. ~a! Three examples of optical systems of interest p
sessing periodicity in thez direction. From top to bottom, a fibe
Bragg grating, a dielectric stack, and a coupled microreson
structure. The particular microresonator structure depicted here
periodic two-channel side-coupled integrated spaced series of r
nators, or periodic two-channel SCISSOR structure@27,28#. ~b! A
line defect waveguide in a 2D photonic crystal slab. The 2D p
tonic crystal slab is composed of a periodic lattice of cylinders
different refractive index from the background material. A numb
of missing rows of cylinders creates the defect waveguide. T
structure has full periodicity only in thez direction.
4-8
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EFFECTIVE FIELD THEORY FOR THE NONLINEAR . . . PHYSICAL REVIEW E69, 016604 ~2004!
@amk ,am8k8
†

#5dmm8d~k2k8!, ~49!

with mode functions„Dmk(r ),Bmk(r )… normalized according
to

E dr
Dmk* ~r !•Dm8k8~r !

«0n2~r !
5

\vmk

2
dmm8d~k2k8!,

E dr
Bmk* ~r !•Bm8k8~r !

m0
5

\vmk

2
dmm8d~k2k8!, ~50!

where the integrals range over all space, and we have
Bloch’s theorem to write

Dmk~r !5A«0n̄2\vmk

4pA
Dmk~r !eikz[

dmk~r !eikz

A2p
,

Bmk~r !5Am0\vmk

4pA
Bmk~r !eikz[

bmk~r !eikz

A2p
, ~51!

whereA is a nominal area chosen for later convenience. T
Dmk(r ) andBmk(r ) have the periodicity of the structure,

Dmk~r !5Dmk~r1Z!,

Bmk~r !5Bmk~r1Z!, ~52!

whereZ is any integer timesLcellẑ. The constants precedin
the periodic functions in Eq.~51! are here chosen so that th
periodic functions are normalized according to

E
cell

dz

Lcell
E dxdy

A
Bmk* ~r !•B m8k~r !5dmm8 ,

E
cell

dz

Lcell
E dxdy

A

n̄2

n2~r !
Dmk* ~r !•D m8k~r !5dmm8 , ~53!

for eachk; here the integral overz only ranges overLcell ,
but the integral overx andy is over the wholexy plane. The
part of the Hamiltonian describing linear dynamics~10!
takes the form

H05(
m

E dk\vmkamk
† amk , ~54!

and again we restrict ourselves to a Kerr nonlinearity~31!,
but with a G3

i jmn(r ) that will only be periodic asz ranges
over Lcell ,

G3
i jmn~r !5G3

i jmn~r1Z!.

Note that while theDmk(r ) and Bmk(r ) introduced in this
section are dimensionless, as are the corresponding qu
ties defined in the last section, other quantities, such
Dmk(r ), dmk(r ), andamk have different units as defined i
this section from those in the last, simply because of
one-dimensional nature of the band structure here.
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ed

e

nti-
s

e

Nonetheless, the approach identified in the last sec
can be implemented here. We can introduce effective fie
associated with the different bands,

gm~z,t ![E dk

A2p
am( k̄1k)~ t !eikz,

which satisfy the commutation relations

@gm~z,t !,gm8~z8,t !#50,

@gm~z,t !,gm8
†

~z8,t !#5dmm8d~z2z8!, ~55!

and if we consider an electromagnetic field that is charac
ized primarily by the effective field associated with one ba
we can repeat the derivation in the preceding section to l
immediately to a Hamiltonian

HNLSE5\vmk̄E dzugmu21
i\

2 S ]vmk

]k D
k̄
E dzS ]gm

†

]z
gm2c.c.D

2
\

4 S ]2vmk

]k2 D
k̄

E dzS ]gm
†

]z

]gm

]z
1c.c.D 2

\

2
amk̄

3E dzugmu42
\

2 S ãmk̄
(z)E dzgm

† ugmu2
]gm

]z
1c.c.D ,

~56!

where

amk̄5
3

\«0
E

cell

dz

Lcell
E dxdyG3

i jnl ~r !„dmk̄
i

~r !…* „dmk̄
j

~r !…*

3dmk̄
n

~r !dmk̄
l

~r !,

ãmk̄
(z)

5
6

\«0
E

cell

dz

Lcell
E dxdyG3

i jnl ~r !„dmk̄
i

~r !…* „dmk̄
j

~r !…*

3dmk̄
n

~r !gmk̄
l (z)

~r !, ~57!

and

gmk̄
(z)

~r ![2 i S ]

]k
dmk~r ! D

k̄

. ~58!

The nonlinear Schro¨dinger equation that results, includin
the shock term, is then

]gm

]t
52 ivmk̄gm2S ]vmk

]k D
k̄

]gm

]z
1

i

2 S ]2vmk

]k2 D
k̄

]2gm

]z2

1 i ugmu2S amk̄12i Im~ ãmk̄
(z)

!
]

]zDgm . ~59!

But our primary concern here is when there are two ba
sufficiently close in frequency that it is not sufficient to co
sider the effective field from only one band; effective fiel
from both must be included. This is the situation where o
4-9
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expects coupled nonlinear mode equations to result. In
lier derivations those mode amplitudes were associated
slowly varying envelope functions modulating Bloch fun
tions at the band edge@6,29#. In our approach, we will see
that the amplitudes in the NLCME are associated with
effective field amplitudes of the two bands, but as combin
by a Bogoliubov transformation.

Pulses of interest here are those whose frequency con
is essentially contained in two bandsm5u,l , where m
5u( l ) refers to the band just above~below! the given pho-
tonic band gap. To characterize the band gap we define
gap widthD and the Bragg frequencyv0,

D[~vuk0
2v lk0

!,

v0[ 1
2 ~vuk0

1v lk0
!, ~60!

wherevuk0
is the frequency at the upper edge of the ba

gap,v lk0
is the frequency at the lower edge of the band g

anduk0u can take on the value 0 orp/Lcell , depending on the
photonic band gap of interest. The quantitiesv0 , vuk0

, v lk0
,

andD are indicated in Fig. 2. The photonic band gap sho
in the figure is the lowest-order gap, so thatl 51, u52, and
uk0u5p/Lcell .

Because both the analysis of the length and time sc
necessary to derive the equations, and the derivation it
are very similar to those previously presented for a pur
one-dimensional system@14#, we here provide only a brie
summary of the results. We start by introducing mode am
tudesslk andsuk via

auk5gksuk1 ihkslk ,

alk5gkslk1 ihksuk , ~61!

FIG. 2. A schematic diagram of the photonic band gap and
and second bands at the edge of the first Brillouin zone. Param
relevant to the coupled mode theory are indicated.
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wheregk andhk are assumed to be real, and satisfy

gk
21hk

251; ~62!

we set their values below. From the definitions~61! of theslk
andsuk , and the commutation relations~25! of the aik , we
find that

@slk ,slk8
†

#5@suk ,suk8
†

#5d~k2k8!, ~63!

with all other commutators vanishing. It is thesik , for i
5u,l , that we will use to build our basic effective fields i
this problem, writing

si~z,t ![E dk

A2p
si (k01k)~ t !eikz. ~64!

Next we assume that to a good approximation the disp
sion relation about the Bragg frequency can be conside
symmetric; we can then write

vuk5v01
D

2
1u~k!,

v lk5v02
D

2
2u~k!, ~65!

where we have introduced the wave number detuning

k[k2k0 . ~66!

In practice we assume that for wave numbers of importa
we can takeu~k! to be quadratic ink, the coefficient of
which then follows fromk•p theory; a symmetric dispersio
relation indeed then results if the far bands~i.e., those other
than l and u) make a negligible contribution in the expre
sion for the effective mass@14#. Within these approxima-
tions, we have

u~k!5
k2

2 S ]2vuk

]k2 D
k5k0

52
k2

2 S ]2vul

]k2 D
k5k0

5
uvgu2

D
k2,

~67!

where from ak•p expansion@14# we have

vg5
c

n̄
E

cell

dz

Lcell
E dxdy

A
ẑ•Re@Euk0

* ~r !3Hlk0
~r !#, ~68!

which has the dimensions of velocity and plays the role t
a ‘‘velocity matrix element’’ between the bands would in
theory of electrons in a periodic potential. We are now in
position to choosegk andhk , which we do according to

gk5A D1u~k!

D12u~k!
, hk5sgn~k!A u~k!

D12u~k!
, ~69!

so as to guarantee

vukgk
21v lkhk

25vuk0
,

t
ers
4-10
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v lkgk
21vukhk

25v lk0
. ~70!

Then, writing the portion of the Hamiltonian~54! that gen-
erates the linear dynamics in terms of thesik andsik

† , we find

HL
CME5\v0E dk~su(k01k)

† su(k01k)1sl (k01k)
† sl (k01k)!

1
\D

2 E dk~su(k01k)
† su(k01k)2sl (k01k)

† sl (k01k)!

2 i\uvgu E kdk~sl (k01k)
† su(k01k)2su(k01k)

† sl (k01k)!,

~71!

or

HL
CME5\v0E dz@su

†~z!su~z!1sl
†~z!sl~z!#

1
\D

2 E dz@su
†~z!su~z!2sl

†~z!sl~z!#

2
\uvgu

2 E dzS sl
†~z!

]su~z!

]z
2su

†~z!
]sl~z!

]z
1c.c.D ,

~72!

where we keep only the contributions from bandu andl, and
we have assumed that fork of importance we haveuu~k!u!D.

This last inequality implies thatugku@uhku for k of impor-
tance, and thus to very lowest order in all our inequalities
displacement field~48! can be written as

D~r ,t !'E dk~su(k01k)~ t !Duk0
~r !

1sl (k01k)~ t !Dlk0
~r !1c.c.!

5@su~z,t !duk0
~r !1sl~z,t !dlk0

~r !#eik0z1c.c.

This is the only order we keep in evaluating the nonline
term ~31!. Using the considerations discussed before
~45!, we find that here Eq.~31! reduces to

HNL
CME52

\

2
auuuuE usu~z!u4dz2

\

2
a l l l l E usl~z!u4dz

2
\

2
auullE ~@sl

†~z!#2su
2~z!1@su

†~z!#2sl
2~z!

14usu~z!u2usl~z!u2!dz2\aull l l

3E @su
†~z!usl~z!u2sl~z!1sl

†~z!usl~z!u2su~z!#dz

2\a luuuE @sl
†~z!usu~z!u2su~z!

1su
†~z!usu~z!u2sl~z!#dz, ~73!

where
01660
e

r
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amnpq5
3

\«0
E

cell

dz

Lcell
dxdyG i j vs~z! dmk0

i ~r !dnk0

j

3~r !dpk0

v ~r !dqk0

s ~r !,

with m,n,p,q each equal to one ofl andu, and we have used
the fact that thedmk0

(r ) are real sincek0 is at a band edge
Because the Bloch functions there are standing waves,
coupled mode equations that thesm(z,t) satisfy are not the
same as the coupled mode equations most often used in
literature. Therefore, instead of using thesm(z,t), we intro-
duce new fieldsS6(z,t) that are associated with travelin
waves:

S6~z,t !5
@sl~z,t !7 isu~z,t !#

A2
. ~74!

Using the commutation relations~63! for the sm(z,t), it is
straightforward to verify that theS6 satisfy

@S6~z,t !,S6
† ~z8,t !#5d~z2z8!, ~75!

with all other commutation relations vanishing.
We now use theS6 to rewrite Eqs.~72! and~73!; we find

a total Hamiltonian

HCME5HL
CME1HNL

CME , ~76!

with

HL
CME5\v0E dz@ uS1~z!u21uS2~z!u2#2

\D

2

3E dz@S2
† ~z!S1~z!1S1

† ~z!S2~z!#2 i
\uvgu

2

3E dzF S S1
† ~z!

]S1~z!

]z
2S2

† ~z!
]S2~z!

]z D2c.c.G ,
~77!

and

HNL
CME52

\a0

2 E dz@ uS1~z!u41uS2~z!u4

14uS1~z!u2uS2~z!u2#2\a1E dz@S1
† ~z!S1~z!

1S2
† ~z!S2~z!#@S2

† ~z!S1~z!1S1
† ~z!S2~z!#

2 i\a3E dz@S1
† ~z!S1~z!1S2

† ~z!S2~z!#

3@S2
† ~z!S1~z!2S1

† ~z!S2~z!#

2
\a2

2 E dz$@S2
† ~z!#2S1

2 ~z!1@S1
† ~z!#2S2

2 ~z!%
4-11
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2
i\a4

2 E dz$@S2
† ~z!#2S1

2 ~z!2@S1
† ~z!#2S2

2 ~z!%,

~78!

where

a0[ 1
4 ~auuuu1a l l l l 12auull!,

a1[ 1
4 ~a l l l l 2auuuu!,

a2[ 1
4 ~auuuu1a l l l l 26auull!,

a3[ 1
2 ~aull l l 1a luuu!,

a4[aull l 2a luuu . ~79!

The field dynamics are recovered from the Heisenberg eq
tions of motion,

i\
]S6

]t
5@S6 ,HCME#, ~80!

which then yield the nonlinear coupled mode equations

05 i
]S6

]t
6 i uvgu

]S6

]z
2v0S61

D

2
S7

1a0~ uS6u212uS7u2!S61a1~ uS1u21uS2u2!S7

1a1~S7
† S61S6

† S7!S67 ia3~ uS1u21uS2u2!S7

6 ia3~S7
† S62S6

† S7!S61~a27 ia4!S6
† S7

2 .

Early works @6,14# were restricted to unit cells that ha
center-of-inversion symmetry; in such a case theaull l and
a luuu terms vanish, leading to vanishinga3 and a4. More
recent work@30# has made use of unit cells where this is n
the case.

VI. CONSERVED QUANTITIES

An advantage of a Hamiltonian formulation is that co
served quantities can be identified by looking at symmet
of the Hamiltonian. While this has been discussed earlie
Refs.@13,14#, we can identify here an approach that holds
both the NLSE and the NLCME, and would hold as well f
their generalizations to include higher order terms than
have done here. For definiteness we consider the th
dimensional NLSE presented in Sec. IV, and so the Ham
tonians we consider for the NLSE and NLCME are Eqs.~46!
and ~76!, respectively.

We begin by noting that both these Hamiltonians are
variant under the infinitesimal transformation

zk→zkeir, ~81!

wherezk refers either to theam( k̄1k) that form the Fourier
components that determine the effective field~34! that ap-
pear in the NLSE Hamiltonian~46!, or one of thesi (k01k) ,

i 5u,l , that form the Fourier components that determine
effective fields ~64! that appear in the CME Hamiltonia
01660
a-

t

s
in
r

e
e-
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e

~76!. For the NLSE, the infinitesimal quantityr can be taken
to be either a fixed phases or n•k, wheren is a constant
vector; for the CMEr5s or nk, wheren is a fixed number.
These invariances lead to conserved quantities@13#, as we
now demonstrate. To do so, we define new coordinate
momentum variables, which are real

fk5A \

2v̄
~zk

†1zk!,

pk5 iA\v̄

2
~zk

†2zk!, ~82!

where v̄5vmk(v0) when zk5am( k̄1k)(si (k01k)) for the
NLSE ~NLCME!. In terms of these, the Heisenberg equ
tions of motion become

dfk

dt
5

]H

]pk
,

dpk

dt
52

]H

]fk
, ~83!

and the infinitesimal transformations~81! become

fk→fk2r
1

v̄
pk ,

pk→pk1v̄rfk . ~84!

Under these transformations the Hamiltonian becomes

H→H1dH, ~85!

where, because the Hamiltonian is invariant under the tra
formation,dH50. One can also determine an explicit expre
sion for dH:

dH5(
i
E dkH ]H

]fk
dfk1

]H

]pk
dpkJ

5(
i
E dkH 1

v̄

dpk

dt
pk1v̄

dfk

dt
fkJ r

5
d

dt (
i
E dkH 1

v̄
pk

21v̄fk
2J r5

d

dt (
i
E dkzkzk

†r,

~86!

where we have used Eq.~82! to convert from thefk ,pk to
thezk . Here we write the result specifically for the NLCM
example, where the sum is over the fields for the differ
i 5u,l . There is no sum in the example of the NLSE, and
integration involved is instead overdk. In both cases the
summation-integral on the last line is conserved, since
time derivative vanishes. This generates two conserved q
tities: The first, associated with phase invariance~r5s!, we
call the chargeQ; the second, associated with translation
invariance~r5n•k or nk! we call the momentumP.

For the NLCME, the results are
4-12
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Q5\v0E
2`

`

~ usuu21usl u2!dz,

P5
\

2E2`

`

~su
†]zsl2sl

†]zsu1c.c.!dz. ~87!

In terms of the traveling fields~74!, the quantities are

Q5\v0E
2`

`

~ uS1u21uS2u2!dz,

P5
\

2i E2`

` S S1
† ]S1

]z
1S2

† ]S2

]z
2c.c.Ddz. ~88!

For the NLSE we find

Q5\vmk̄E
V
dr ugmu2,

Pj5
\

2i EV
dr S gm

† ]gm

]r j
2gm

]gm
†

]r j D ,

where here the momentum is a vector quantity.
Of course, the Hamiltonian is itself a conserved quan

for both the NLSE and the NLCME as well. Including th
Hamiltonian itself, we then have three conserved quanti
so derived for both the NLSE and NLCME. Of these,H is
straightforward to understand, since it represents conse
tion of energy. The quantityP represents a conserved m
mentum, which arises out of the translational invariance
the system. Of course, the underlying photonic crystal m
dium is not translationally invariant; it is only at the level
the effective equations, the NLSE and NLCME, that trans
tional invariance obtains, and hence momentum is c
served. The quantityQ has often been referred to as th
‘‘energy’’ in the electromagnetic field, whileH̄5H2Q has
been called the ‘‘Hamiltonian’’@9,31#. Certainly the quantity
H̄ can be used~via Hamilton’s equations of motion! to derive
the correct equations of motion for the effective fields on
the carrier frequencyv̄ is factored out. However, unlikeH,
H̄ does not represent the total energy in the electromagn
field. We have discussed this problem in detail elsewhere
the one-dimensional nonlinear Schro¨dinger equation@13#,
and now consider the more complicated situation that ar
in the Hamiltonian formulation of the nonlinear Schro¨dinger
equation with a shock term.

VII. DIFFERENT SHOCK TERMS

The nature of the shock term that appears in our nonlin
Schrödinger equations, for example, in the one-dimensio
example described by Eq.~59!, is different from the kind of
shock term that often appears in the literature. In this sec
we address that difference and its physical meaning, wh
highlights the difference between our approach here and
more usual one of deriving slowly varying envelope fun
tions. To focus on that we consider the simple limit of
01660
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uniform ~nondispersive! medium, with n(r )5n̄. Our one-
dimensional structure equations from the start of Sec. V
be applied by simply taking the areaA to be a normalization
area in thexy plane; that is, in integrals such as those a
pearing in Eqs.~53! and ~57! we take the integral over the
plane to range only over an areaA. The band indexm can be
dropped, and if we consider displacement fields polarized
the x direction we find from Eq.~53! the simple result that

Dk~r !5 x̂, ~89!

and then from Eq.~57! that

a k̄5
3«0n̄2c2k̄2\G3

xxxx

4A

and

ã k̄
(z)

52
i

k̄
a k̄ , ~90!

the areaA appearing in these expressions simply beca
ug(z,t)u2 is ~approximately! equal to the energy flux throug
that area. With these expressions the Hamiltonian~56! re-
duces to

H5\v̄E dzugu21
i\c

2n̄
E dzS ]g†

]z
g2c.c.D2

\

2
a k̄E dzugmu4

1
i\

2k̄
S a k̄E dzgm

† ugmu2
]gm

]z
2c.c.D , ~91!

where we have putv̄[ck̄/n̄, and our dynamical Eq.~59!
becomes

]g

]t
1

c

n̄

]g

]z
52 i v̄g1 ia k̄ugu2g1

2a k̄

k̄
ugu2

]g

]z
. ~92!

More usual equations in the literature given in Re
@15,32,33#, on the other hand, are of a different form,

] f

]t
1

c

n̄

] f

]z
5 ia k̄u f u2f 1

a k̄

k̄

]

]z
~ u f u2f !, ~93!

in our notation. The rapidly varying term (2 i v̄g) that ap-
pears in Eq.~92! but not Eq.~93! is of course a trivial dif-
ference; it can be removed from Eq.~92! or added to Eq.~93!
by redefining the field in terms of a rapidly varying pha
term: g5g8exp(2iv̄t). The more serious difference is th
shock term, where Eq.~92! seems to be missing one of th
terms that would result from taking the derivative in E
~93!.

In fact both equations are correct, if understood to be
the same level of approximation; the fieldsg andf are simply
different. To see that we need to briefly review the derivat
of Eq. ~93!, which is not completely trivial. While this is
usually done in the literature by beginning with the elect
field as the fundamental field, for comparison with our wo
4-13
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we do it here in terms of the displacement field. In the o
dimensional uniform medium we consider, the second-or
equation thatD(z,t) satisfies follows directly from the equa
tions at the start of Sec. II, and is

n̄2

c2

]2D

]t2
2

]2D

]z2
52n̄2G3

xxxx]2~D3!

]t2
. ~94!

To get an equation similar to Eq.~93! one looks for a slowly
varying amplitude functionf (z,t), writing

D~z,t !5n f ~z,t !ei ( k̄z2v̄t)1c.c., ~95!

where we have chosen an overall factor

n5A«0n̄2\v̄

2A

for convenience in comparisons below. Using the ansatz~95!
in the differential equation~94! we find

] f

]t
1

c

n̄

] f

]z
5 ia k̄u f u2f 1

2a k̄

k̄

]

]z
~ u f u2f !1Tcorr , ~96!

where

Tcorr52
i

2k̄
S n̄

c

]2f

]t2
2

c

n̄

]2f

]z2D . ~97!

In going from Eqs.~94! and ~95! to Eqs.~96! and ~97! we
have neglected the terms inD3 that result in third harmonic
generation, as well as a higher-order shock term of the fo
]2(u f u2f )/]z2. Often, of course, higher-order derivativ
terms of slowly varying envelope functions such as tho
appearing inTcorr Eq. ~97!, can also be neglected. Howeve
here they must be kept, because in keeping the shock te
in our equations we keep terms of first order in botha k̄ and
a k̄k̄

21]/]z. Nonetheless, at this level of approximation
does suffice, in evaluatingTcorr in terms off, to use only the
first term on the right-hand side of Eq.~96!, and then indeed
even replace]/]t simply by cn̄21]/]z when that derivative
is premultiplied bya k̄ . When this is done and the terms a
collected, we find Eq.~93!.

The derivation makes clear the difference between
fields f (z,t) and g(z,t). From Eq.~95! and recalling Eqs.
~89! and~51! we see that the ansatz~95! can be written in the
form

D~r ,t !5dk̄~r …f ~z,t !ei ( k̄z2v̄t)1c.c., ~98!

simply the one-dimensional analog in this simple problem
the general form Eq.~33!, while our derivation of the Eq
~92! makes use of the one-dimensional analog of Eq.~36!.
Comparing these, the relation betweenf (z,t) andg(z,t) is

f ~z,t !5ei v̄tFg~z,t !2
i

2k̄

]g~z,t !

]z
1¯G , ~99!
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and when this is used in Eq.~93! and terms are kept at th
appropriate level of approximation, as discussed above,
recover Eq.~92!.

We note, however, that while the effective fieldg(z,t)
satisfies canonical commutation relations~55!, the field
f (z,t) does not; furthermore, while the Hamiltonian~56!
could be written to the appropriate level of approximation
terms of f (z,t), neither its derivation beginning from Eq
~98!, nor its application with noncanonical commutation r
lations, would be as simple as the derivation and applica
of the Hamiltonian~91!, and others in this paper similar to i

Indeed, the way that terms such as ‘‘Hamiltonian’’,
well as others such as ‘‘momentum’’ and ‘‘energy’’, arise
the literature in equations such as Eq.~93! is rather different
than in the kind of canonical approach we have taken h
To see this in some detail, we reinstate the dispersive term
our one-dimensional equation. Retaining the uniform m
dium approximation but otherwise takingv5v(k), the re-
lation analogous to Eq.~99! is

f ~z,t !5ei v̄tFg~z,t !2 i
v̄8

2v̄

]g~z,t !

]z
1¯G , ~100!

wherev̄8[(]v/]k) k̄ ; in what follows we will also usev̄9
[(]2v/]k2) k̄ . Then we have, instead of Eq.~93!, the equa-
tion

] f

]t
1v̄8

] f

]z
5

i

2
v̄9

]2f

]z2
1 ia k̄u f u2f 1 i ã k̄

(z) ]

]z
~ u f u2f !,

~101!

which follows from our Eq.~59! and the use of relation
~100!, keeping contributions to the appropriate order; w
have reinstated the explicit appearance of the factorã k̄

(z) ,
which is seen to be purely imaginary from a relation ana
gous to Eq.~90!. As Eq. ~59! and Eq.~101! is integrable by
means of an inverse scattering transform@34#. Thus an infi-
nite set of conservation laws can be derived from a recurs
formula. The first three such conserved quantities, which
have scaled by overall constants, are

C15E dzu f u2,

C25E dzF i S f †
] f

]z
2 f

] f †

]z D1
2i ã k̄

(z)

v̄9
u f u4G ,

C35E dzF v̄9
] f †

]z

] f

]z
2a k̄u f u41

3

2
i ~ i ã k̄

(z)
!u f u2

3S f †
] f

]z
2 f

] f †

]z D1
2

v̄9
~ i ã k̄

(z)
!2u f u6G , ~102!

and these have been given varying interpretations in the
erature. For example, they have been called the ‘‘energ
‘‘momentum’’, and ‘‘Hamiltonian’’ respectively,@32#. In or-
der to compare these conserved quantities of Eq.~101! with
4-14
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those of Eq.~59!, we first consider both equations in the lim
ã k̄

(z)→0, where they share a common form apart from
trivial phase term, which we neglect below. Then the qu
tities ~102! take the simple form

C1
NLSE5E dzu f u2,

C2
NLSE5E dzS i f †

] f

]z
2 i f

] f †

]z D ,

C3
NLSE5E dzS v̄9

] f †

]z

] f

]z
2a k̄u f u4D . ~103!

The conserved quantityC3
NLSE has been called a Hamil

tonian @35#, and rightly so, since the NLSE~101! with ã k̄
(z)

50 can be written straightforwardly in canonical form—i.e
as Hamilton’s equations for a pair of fields composed from
linear combination off and f †, satisfying canonical commu
tation relations—withC3

NLSE as the Hamiltonian@36,13#.
Furthermore, one can compose a canonical Hamiltonian,
one that is numerically equal to the electromagnetic ene
by taking a particular linear combination ofC1

NLSE, C2
NLSE,

andC3
NLSE @13#. A problem arises, however, when the sho

term is reinstated, sinceC3 has a term proportional tou f u6.
Certainly in this case one cannot form a pair of fields from
linear combination off and f †, introduce canonical commu
tation relations for those fields, and recover an equation w
nonlinear terms like those of Eq.~101! from Hamilton’s
equations. So althoughC3 is a conserved quantity associat
with Eq. ~101!, it cannot be used as a Hamiltonian wi
canonical commutation relations to generate Eq.~101!.

Furthermore, there is no straightforward way for E
~101! to be generated byanyHamiltonian, and to thus obtain
a shock term of the form](u f u2f )/]z from a canonical
Hamiltonian formulation, in the following sense. Assume w
impose canonical commutation relations on a pair of fieldf

andf̄, which are linear combinations off and f †. If we then
write down any integralH composed of sums of products o
f, f †, and their spatial derivatives, and writeH in terms off
andf̄, then Hamilton’s equations forf andf̄, with H as the
Hamiltonian can only yield a shock term of the form we ha
presented in this paper. The relevant commutator, for eq
times, is

F f ~z8!,E dzS j1f †~z! f †~z! f ~z!
] f ~z!

]z

1j2f ~z! f ~z! f †~z!
] f †~z!

]z D G
52~j12j2!u f ~z8!u2

] f ~z8!

]z8
,

wherej1 andj2 are complex numbers.
We also note that the quantityC1 clearly does not corre

spond to the electromagnetic energy, as can be verified
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using Eq.~100! in Eq. ~56!. Instead, it is better interpreted a
a ‘‘charge,’’ as we have done here, or a ‘‘particle numbe
@35#.

The quantityC2
NLSE gives the familiar expression for th

momentum of the NLSE in the absence of the shock term
this limit, the expression for the momentumC2 of f has the
same form as the momentumP of the effective fieldg de-
rived in the previous section. This similarity is lost, howev
if the shock term is reinstated. In that case,C2 acquires a
term proportional tou f u4, while the expression forP for the
field g is unchanged. Since the integral over allz of u f u4 is
not itself conserved, it is clear that the expression for
conserved momentum of the NLSE must be modified if o
augments it with the conventional shock term. In fact, t
shock term derived in this paper is the only possible sh
term involving one spatial derivative and three factors ofg or
g† that can be added to the NLSE without changing
expression for the conserved momentum.

The simplicity with which the field equations can be d
rived by the canonical approach described here, toge
with the way we can truly identify quantities connected w
symmetries and called ‘‘charge’’, ‘‘momentum’’, and ‘‘en
ergy’’ as they are in the rest of physics, seems to us a cog
argument for our approach.

VIII. SHOCK TERM ENHANCEMENT
IN PHOTONIC CRYSTALS

Concern with the nature and treatment of the shock te
is not purely academic, for the shock term can be enhan
in photonic crystals over the value it would take in a unifor
medium, and it—and perhaps even successive terms in
expansion that generated it—can be comparable in size to
usual self-phase modulation term in the nonlinear Sch¨-
dinger equation. To demonstrate this, we consider a phot
crystal structure composed of a square lattice of cylindri
rods of infinite length, from which three adjacent~100!-
direction rows of rods have been removed, as indicated in
inset of Fig. 3. This structure is similar to the one depicted
Fig. 1~b!; it differs in that it avoids the complications ass
ciated with cylinders of finite length, but is similar in sup
porting guided modes in the defect region. It is in the
guided modes that we will examine shock term enhan
ment. This defect paradigm for photonic crystal waveguid
has been the subject of intense fabrication efforts@37–41#
and has also been studied numerically@42–47#.

To consider guided modes of the waveguide structure,
find Bloch modes with wave vectork5(0,0,k), as indicated
in the inset of Fig. 3. The calculations are accomplished
constructing a supercell in the direction in which the perio
icity is broken by the defect, so we are formally consideri
a periodic array of adjacent waveguides separated by a
percell width. As long as the amplitude of the guided fields
low at the edge of the supercell, the results should provid
good approximation to the behavior of the guided fields o
single line defect waveguide. Since this supercell struct
has three-dimensional periodicity, we can describe
guided modes of the structure by using the 3D structure
malism from Sec. IV for frequencies within a band, or n
4-15
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too far within a band gap@48#.
Because the wave vector lies in the plane of the latt

the Bloch modes can be separated by polarization, and
specifically consider TM modes, i.e., those with elect
fields polarized parallel to the rods. The calculations are p
formed using a freely available package@49# which uses a
polarized plane wave basis to solve the linear Maxw
eigenproblem using a conjugate gradient method. In unit
the lattice constanta, the supercell consists of a 931 array
of cylindrical rods of radiusr 50.2, with three adjacent rod
removed to form the defect. The rods are taken to have
index of refraction of 3.4, typical of a semiconductor ma
rial at optical or telecommunications wavelengths. The ba
ground is taken to be air. This supercell dielectric function
shown in the inset of Fig. 3.

In selecting a band labeling scheme, we favor smoothn
of the bands ink, at the cost of having to forego globa
numbering by ascending order in frequency. Specifically,
choose to number the bands in order of ascending freque
when smoothly followed to theX point, which is atka/2p
50.5 in Fig. 3. Thus]vmk /]k is continuous everywhere ink
space, and following the discussion after Eq.~37!, it is pos-
sible to have continuity ink of dmk . The band structure is
plotted in Fig. 3. While most of the bands are bulk mod
each of the bands 7, 8, and 9 are guided modes for s
region of theGX line in k space. These bands, respective
correspond to bound modes with zero, one, and two no
planes parallel to theyz plane. In what follows, we focus on
band 8.

Since the TM mode has a linearly polarized displacem
field, the following calculations are independent of the sy
metry of the third-order nonlinear response. Since we will
interested in comparing the relative size of the shock te
and the self-phase modulation term, we will not need defin
values forG3

i jmn(r ), and we scale all our results to the valu
of the one important response tensor componentG3

yyyy in the
dielectric. From the Eqs.~57! for amk̄ and ãmk̄

(z) we have

FIG. 3. Band structure of a 2D photonic crystal with a lin
defect waveguide. Three adjacent~100!-direction rows of rods have
been removed from a bulk crystal of lattice constanta to form the
waveguide. The dielectric function is depicted in the inset, wh
also indicates the direction ofk. The region between the horizonta
dotted lines corresponds to the in-plane photonic band gap of
bulk crystal, and indicates the location of the guided defect mo
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52
1

2

]

]kz
~amk! k̄ .

Figure 4 shows the coefficientamk for k up to the Brillouin
zone edge in thez direction for the lowest eight bands. Fo
this structure, we find that the bulk modes show no intere
ing features in terms ofamk , but the guided modes can sho
both negative slopes and sharp rises.

The ratio of the shock term to the self-phase modulat
term in the dynamical equation~59! is given by

R52 iRcRp ,

where we have defined the dimensionless quantities

Rc[~aamk!
21

]

]kz
~amk! k̄ ,

Rp[~gm!21a
]gm

]z
, ~104!

wherea is the lattice constant. HereRc contains the infor-
mation about the photonic crystal, andRp contains the infor-
mation about the pulse. We note that while the ratiosR, Rc ,
andRp have arisen here within a formulation of the NLSE
terms of field amplitudes in Eq.~59!, these ratios have nu
merical values common to formulations in terms of field a
plitudes, power amplitudes, or intensity amplitudes. Now o
whole expansion of the linear part of the dynamics requi
that Rp!1, and so for the shock term to be as large as
self-phase modulation term, in the regime where the kind
effective field description we are constructing here is ap
cable, we requireRc@1, so thatuRu'1. For many typical
points in the band structure, this condition is not met; in fa
we often findRc&1, so that it is reasonable to neglect th
shock term in characterizing the dynamics, at least at
order considered in this paper. However, at certain point
the band structure,Rc can be enhanced by an order of ma
nitude, so thatRc*1 anduRu&1. While not as large as the
self-phase modulation term in this case, the shock term co
not be dismissed out of hand, and indeed could make a
nificant contribution to the dynamics. In this work we on

h

he
s.

FIG. 4. The nonlinear coefficientamk for k up to the Brillouin
zone edge in thez direction, for the lowest eight bands.
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concern ourselves with showing an order-of-magnitude
hancement of the shock term and arguing for the plausib
of a significant effect; we defer a more detailed analysis
later work.

Figure 5 showsRc calculated for the lowest eight bands
the photonic crystal for wave vectork ranging over the do-
main corresponding to the boxed area in Fig. 4. This co
sponds to the domain for which the upper bound mode, b
8, is near the upper band edge of the photonic band ga
the bulk crystal. While the lowest six bands show no sign
cant k dependence ofRc over this range and haveRc less
than or very close to unity, the guided modes show sign
cantk-dependence, and take on positive or negative val
Band 8 shows a significant enhancement ofRc as the mode
frequency approaches the upper band edge of the bulk c
tal. For example, whenka/(2p)50.36, band 8 is still a
well-confined mode, and yet hasRc55.6, an order of mag-
nitude larger than that obtained for most of the lower ban
Band 4, in comparison, hasRc50.40 at the same point.

This enhancement of the shock effect can be readily
terpreted within the framework of this paper. The factoramk
can be interpreted as the degree to which the Bloch m
samples the nonlinearity of the dielectric. As we trave
band 8 from the center of the bulk gap region towards
upper band edge, the mode profile remains relatively c
stant. However, in crossing the upper band edge and ch
ing from a strongly confined mode to an unconfined b
mode of a different profile, the mode undergoes a signific
change. Although this only corresponds to a small chang
the mode energy, it corresponds to a significant change in
quartic sampling of the nonlinearity by the Bloch mode. A
since the change occurs over a relatively small range ok
vectors near the band edge, the derivative is large, and
Im amk

p is large. Furthermore, since the waveguide has an
core, the guided modes sample little of the dielectric, soamk
is low. ThusRc is large.

FIG. 5. The shock-enhancement factorRc , calculated for the
lowest eight bands of the photonic crystal for wave vectork in the
z direction, over the domain corresponding to the boxed area in
4. This corresponds to the domain for which the upper bound m
band 8, is near the upper band edge of the photonic band gap o
bulk crystal. Note the significantk dependence, and the range
values attained by the guided modes near the upper band edg
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This shock enhancement is significant even where
mode is still well confined. In the case ofka/(2p)50.36
given above, 74% of the total mode energy of band 8 is
the defect region, compared with 85% when optimally co
fined. Beyond this, the dropoff in confined energy is sho
in Fig. 6. As a baseline for comparison, the defect region
which is taken to be the largest rectangular zone that can
inscribed in the cell without overlapping any of th
cylinders—comprises 40% of the unit cell, and each of
rest of the lowest ten bands have roughly 10% of their
ergy or less confined to it.

Of course, we have only shown here that in a specific c
the shock term can get large enough in a photonic crysta
be of concern when considering nonlinear propagati
Whether or not such a term will remain significant as tim
evolves, and indeed whether or not the kind of expansion
have used in this paper will remain adequate as the fi
propagates are more complicated issues that we plan to
dress in a future paper.

IX. CONCLUSION

The goal of this paper has been to develop an approac
treat the nonlinear propagation of electromagnetic fields
photonic crystals based on the introduction of effect
fields. While we began withD(r ,t) andB„r ,t) as our funda-
mental fields, rather than the more usualE„r ,t) andH„r ,t),
this was only to facilitate the simple canonical formulation
the electromagnetic field. The fields that become our
namical quantities in this approach are neitherD(r ,t) and
B(r ,t), norE(r ,t) andH(r ,t), but rather effective fields tha
we construct in real space from the canonical amplitudes
the different Fourier components of the electromagne
field. These scalar fields satisfy the canonical commuta
relations exactly, so even when their dynamics are only
scribed approximately they remain simple quantities w
which to work. And, indeed, it is simpler to derive the

g.
e,
the

FIG. 6. Fraction of mode energy confined in the defect regi
As a baseline for comparison, the defect region—which is take
be the largest rectangular zone that can be inscribed in the
without overlapping any of the cylinders—comprises 40% of t
unit cell, and the nonguided lower supercell modes all have roug
10% of their energy or less confined to the defect region.
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approximate dynamics than to derive the approximate
namics of the slowly varying envelope functions associa
with the electromagnetic field itself. Because this approac
based on a canonical formulation of the electromagn
field, the Hamiltonian and its symmetries are available
the investigation and identification of conserved quantiti
and the resulting theory is such that quantization can be
ily undertaken.

We have used this approach to derive the usual nonlin
Schrödinger equation and nonlinear coupled mode equati
that have formed the basis of much of the discussion of n
linear propagation in one-dimensional structures. Throu
the approach developed here, they can be extended to h
dimensional structures with large variations in the line
properties of the photonic crystal. We have also shown h
the approach easily allows for the extension of these u
equations to include higher-order terms, investigating
first ‘‘shock’’ type correction that appears in the nonline
Schrödinger equation. We have argued that this term arise
our approach in a form that is more convenient than it d
in other, more direct approaches based directly on enve
functions characterizing one of the Maxwell fields, in tha
canonical Hamiltonian theory results. And we have argu
that this term can indeed be important in nonlinear propa
tion in photonic crystals.

Throughout we have considered only a Kerr nonlinear
investigated only third-order nonlinear processes associ
with an intensity dependent refractive index, and restric
ourselves to wave packets centered at points in the b
structure where there are no degeneracies. And the cano
formulation we have employed is restricted to material m
dia that themselves are approximated as lossless and di
sionless. But extensions to more complicated nonlinearit
to nonlinear parametric processes involving frequency m
ing, and to effective fields associated with points or lines
degeneracy can also be considered within this framew
And recent work that allows a canonical formulation of
dispersive and lossy material medium@50# can be general-
ized to treat photonic crystals and included in this fram
work. We plan to turn to these issues in future papers.
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APPENDIX: DISCRETE AND CONTINUOUS MODE
NOTATION

In this Appendix we sketch how the various normalizati
factors that appear in Secs. IV and V arise in moving fro
the discrete labeling of modes used in Sec. III to the conti
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ous labeling used in those latter sections. That continu
labeling is of two types. In Sec. IV we are interested in a
photonic crystal, or in a region of the Brillouin zone of
lower dimensional photonic structure where the solutions
the linear Maxwell equations are characterized by band in
cesm and crystal wave vectorsk that range continuously in
all directions about a given point in reciprocal space. In S
V we focus on lower dimensional structures and a region
the Brillouin zone where, for a given band indexm or a
given set of band indices, there is a family of solutions of t
linear Maxwell equations characterized by a one dimensio
crystal wave numberk that varies continuously. We conside
the mode notation for these two cases below. In this app
dix, and only here, we use tildes to indicate the discr
mode functions and associated amplitudes introduced in
III, such as„D̃a(r ),B̃a(r )… and ãa(t) to distinguish between
these discretely labeled mode functions and the continuo
labeled mode functions we introduce here. While the disc
sion here is self-contained, rather than repeating equat
we will refer back to those that already appear in the tex

We begin first with the mode structure of interest in Se
IV, and consider first the use of Bloch’s theorem to label o
modes by a band indexm and a crystal wave vectork that
lies within the first Brillouin zone. Our indexa then is re-
placed by the pairmk, and we write our modes as

D̃mk~r !5A«0n̄2\vmk

2V
Dmk~r !eik•r,

B̃mk~r !5Am0\vmk

2V
Bmk~r !eik•r, ~A1!

where n̄ is a reference refractive index, the value of whi
can be chosen for convenience; we assume a unit cell vol
Vcell and a normalization volume ofN unit cells, with vol-
ume V5NVcell . We choose the factors in Eq.~A1! so that
the periodic parts~28! of the Bloch functions are normalize
according to Eq.~29! for any k, as follows from Eq.~A1!
and Eqs.~17! and~18!. We do not use tildes on the function
„Dmk(r ),Bmk(r )… because we will keep these functions as
move to continuous notation, which we now do.

We want to move from discrete mode amplitudes satis
ing

@ ãmk ,ãm8k8
†

#5dmm8dkk8 ,

to continuously labeled mode amplitudes satisfying

@amk ,am8k8
†

#5dmm8d~k2k8!.

From these follow

(
m8k8

@ ãmk ,ãm8k8
†

#51,

(
m8

E @amk ,am8k8
†

#dk851, ~A2!

respectively, and using
4-18
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(
k8

→VE dk8

8p3
~A3!

as we move from discrete to continuous labeling of wa
vectors, Eq.~A2! imply that

ãmk→A8p3

V
amk . ~A4!

The same approach, as we move from the normalization c
ditions ~17! and ~18! to Eq. ~26! leads to

D̃mk~r !→A8p3

V
Dmk~r !,

B̃mk~r !→A8p3

V
Bmk~r !, ~A5!

and hence to Eq.~27!. Using the relations~A4! and ~A5!
together with the summation-to-integration form Eq.~A3!
we recover Eq.~24! from Eq. ~20! and Eq.~30! from Eq.
~22!.

We now turn to the mode structure of interest in Sec.
where we only have periodicity in one direction, which w
take asz. Our general indexa then now replaced by the pa
mk, and we write our modes as

D̃mk~r !5A«0n̄2\vmk

2LA
Dmk~r !eikz,

B̃mk~r !5Am0\vmk

2LA
Bmk~r !eikz. ~A6!

Here we assume a periodicity ofLcell in thez direction and a
normalization length of N unit cells, with length L
5NLcell . Now integrals in Eqs.~17! and ~18! range overL
in thez direction but over allx andy; nonetheless, we intro
duce a nominal areaA in the xy plane that we use for con
venience in our normalization constants. The factors in
~A6! are such that the periodic parts~52! of the Bloch func-
tions are normalized according to Eq.~53! for anyk, follow-
ing from Eqs.~A6!, ~17!, and ~18!. Again we do not use
01660
e

n-

,

.

tildes on the functions„Dmk(r ),Bmk(r )… because we will
keep these functions as we move to continuous notation

Here our task is to move from discrete mode amplitud
satisfying

@ ãmk ,ãm8k8
†

#5dmm8dkk8 ,

to continuously labeled mode amplitudes satisfying

@amk ,amk8
†

#5dmm8d~kÀk8!.

The procedure follows that above; from

(
m8k8

@ ãmk ,ãm8k8
†

#51,

(
m8

E @amk ,am8k8
†

#dk851, ~A7!

and now

(
k8

→LE dk8

2p
~A8!

as we move from discrete to continuous labeling of wa
vectors, Eq.~A7! imply that

ãmk→A2p

L
amk . ~A9!

The same approach, as we move from the normalization c
ditions ~17! and ~18! to Eq. ~50! leads to

D̃mk~r !→A2p

L
Dmk~r !,

B̃mk~r !→A2p

L
Bmk~r !, ~A10!

and hence to Eq.~51!. Following the approach used in th
three-dimensional case above, using the relations~A9! and
~A10! together with the summation-to-integration form~A8!
we recover Eq.~48! from Eq. ~20! and Eq.~54! from Eq.
~22!.
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